fork-openpgpjs/src/packet/secret_key.js
Daniel Huigens 3f1734ae7a Move CFB optimizations into cfb.js
So that uses of CFB other than sym_encrypted_integrity_protected.js
can benefit from them.

Also, implement CFB resync mode in terms of normal CFB rather than
separately (and duplicated).
2019-01-02 15:12:53 +01:00

357 lines
11 KiB
JavaScript

// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires packet/public_key
* @requires type/keyid
* @requires type/s2k
* @requires crypto
* @requires enums
* @requires util
*/
import publicKey from './public_key';
import type_keyid from '../type/keyid.js';
import type_s2k from '../type/s2k';
import crypto from '../crypto';
import enums from '../enums';
import util from '../util';
/**
* A Secret-Key packet contains all the information that is found in a
* Public-Key packet, including the public-key material, but also
* includes the secret-key material after all the public-key fields.
* @memberof module:packet
* @constructor
* @extends module:packet.PublicKey
*/
function SecretKey(date=new Date()) {
publicKey.call(this, date);
/**
* Packet type
* @type {module:enums.packet}
*/
this.tag = enums.packet.secretKey;
/**
* Encrypted secret-key data
*/
this.encrypted = null;
/**
* Indicator if secret-key data is encrypted. `this.isEncrypted === false` means data is available in decrypted form.
*/
this.isEncrypted = null;
}
SecretKey.prototype = new publicKey();
SecretKey.prototype.constructor = SecretKey;
// Helper function
function parse_cleartext_params(cleartext, algorithm) {
const algo = enums.write(enums.publicKey, algorithm);
const types = crypto.getPrivKeyParamTypes(algo);
const params = crypto.constructParams(types);
let p = 0;
for (let i = 0; i < types.length && p < cleartext.length; i++) {
p += params[i].read(cleartext.subarray(p, cleartext.length));
if (p > cleartext.length) {
throw new Error('Error reading param @:' + p);
}
}
return params;
}
function write_cleartext_params(params, algorithm) {
const arr = [];
const algo = enums.write(enums.publicKey, algorithm);
const numPublicParams = crypto.getPubKeyParamTypes(algo).length;
for (let i = numPublicParams; i < params.length; i++) {
arr.push(params[i].write());
}
return util.concatUint8Array(arr);
}
// 5.5.3. Secret-Key Packet Formats
/**
* Internal parser for private keys as specified in
* {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.5.3|RFC4880bis-04 section 5.5.3}
* @param {String} bytes Input string to read the packet from
*/
SecretKey.prototype.read = function (bytes) {
// - A Public-Key or Public-Subkey packet, as described above.
const len = this.readPublicKey(bytes);
bytes = bytes.subarray(len, bytes.length);
// - One octet indicating string-to-key usage conventions. Zero
// indicates that the secret-key data is not encrypted. 255 or 254
// indicates that a string-to-key specifier is being given. Any
// other value is a symmetric-key encryption algorithm identifier.
const isEncrypted = bytes[0];
if (isEncrypted) {
this.encrypted = bytes;
this.isEncrypted = true;
} else {
// - Plain or encrypted multiprecision integers comprising the secret
// key data. These algorithm-specific fields are as described
// below.
const cleartext = bytes.subarray(1, -2);
if (!util.equalsUint8Array(util.write_checksum(cleartext), bytes.subarray(-2))) {
throw new Error('Key checksum mismatch');
}
const privParams = parse_cleartext_params(cleartext, this.algorithm);
this.params = this.params.concat(privParams);
this.isEncrypted = false;
}
};
/**
* Creates an OpenPGP key packet for the given key.
* @returns {String} A string of bytes containing the secret key OpenPGP packet
*/
SecretKey.prototype.write = function () {
const arr = [this.writePublicKey()];
if (!this.encrypted) {
arr.push(new Uint8Array([0]));
const cleartextParams = write_cleartext_params(this.params, this.algorithm);
arr.push(cleartextParams);
arr.push(util.write_checksum(cleartextParams));
} else {
arr.push(this.encrypted);
}
return util.concatUint8Array(arr);
};
/**
* Check whether secret-key data is available in decrypted form. Returns null for public keys.
* @returns {Boolean|null}
*/
SecretKey.prototype.isDecrypted = function() {
return this.isEncrypted === false;
};
/**
* Encrypt the payload. By default, we use aes256 and iterated, salted string
* to key specifier. If the key is in a decrypted state (isEncrypted === false)
* and the passphrase is empty or undefined, the key will be set as not encrypted.
* This can be used to remove passphrase protection after calling decrypt().
* @param {String} passphrase
* @returns {Promise<Boolean>}
* @async
*/
SecretKey.prototype.encrypt = async function (passphrase) {
if (this.isDecrypted() && !passphrase) {
this.encrypted = null;
return false;
} else if (!passphrase) {
throw new Error('The key must be decrypted before removing passphrase protection.');
}
const s2k = new type_s2k();
s2k.salt = await crypto.random.getRandomBytes(8);
const symmetric = 'aes256';
const cleartext = write_cleartext_params(this.params, this.algorithm);
const key = await produceEncryptionKey(s2k, passphrase, symmetric);
const blockLen = crypto.cipher[symmetric].blockSize;
const iv = await crypto.random.getRandomBytes(blockLen);
let arr;
if (this.version === 5) {
const aead = 'eax';
const optionalFields = util.concatUint8Array([new Uint8Array([enums.write(enums.symmetric, symmetric), enums.write(enums.aead, aead)]), s2k.write(), iv]);
arr = [new Uint8Array([253, optionalFields.length])];
arr.push(optionalFields);
const mode = crypto[aead];
const modeInstance = await mode(symmetric, key);
const encrypted = await modeInstance.encrypt(cleartext, iv.subarray(0, mode.ivLength), new Uint8Array());
arr.push(util.writeNumber(encrypted.length, 4));
arr.push(encrypted);
} else {
arr = [new Uint8Array([254, enums.write(enums.symmetric, symmetric)])];
arr.push(s2k.write());
arr.push(iv);
arr.push(crypto.cfb.encrypt(symmetric, key, util.concatUint8Array([
cleartext,
await crypto.hash.sha1(cleartext)
]), iv));
}
this.encrypted = util.concatUint8Array(arr);
return true;
};
async function produceEncryptionKey(s2k, passphrase, algorithm) {
return s2k.produce_key(
passphrase,
crypto.cipher[algorithm].keySize
);
}
/**
* Decrypts the private key params which are needed to use the key.
* {@link module:packet.SecretKey.isDecrypted} should be false, as
* otherwise calls to this function will throw an error.
* @param {String} passphrase The passphrase for this private key as string
* @returns {Promise<Boolean>}
* @async
*/
SecretKey.prototype.decrypt = async function (passphrase) {
if (this.isDecrypted()) {
throw new Error('Key packet is already decrypted.');
}
let i = 0;
let symmetric;
let aead;
let key;
const s2k_usage = this.encrypted[i++];
// - Only for a version 5 packet, a one-octet scalar octet count of
// the next 4 optional fields.
if (this.version === 5) {
i++;
}
// - [Optional] If string-to-key usage octet was 255, 254, or 253, a
// one-octet symmetric encryption algorithm.
if (s2k_usage === 255 || s2k_usage === 254 || s2k_usage === 253) {
symmetric = this.encrypted[i++];
symmetric = enums.read(enums.symmetric, symmetric);
// - [Optional] If string-to-key usage octet was 253, a one-octet
// AEAD algorithm.
if (s2k_usage === 253) {
aead = this.encrypted[i++];
aead = enums.read(enums.aead, aead);
}
// - [Optional] If string-to-key usage octet was 255, 254, or 253, a
// string-to-key specifier. The length of the string-to-key
// specifier is implied by its type, as described above.
const s2k = new type_s2k();
i += s2k.read(this.encrypted.subarray(i, this.encrypted.length));
key = await produceEncryptionKey(s2k, passphrase, symmetric);
} else {
symmetric = s2k_usage;
symmetric = enums.read(enums.symmetric, symmetric);
key = await crypto.hash.md5(passphrase);
}
// - [Optional] If secret data is encrypted (string-to-key usage octet
// not zero), an Initial Vector (IV) of the same length as the
// cipher's block size.
const iv = this.encrypted.subarray(
i,
i + crypto.cipher[symmetric].blockSize
);
i += iv.length;
// - Only for a version 5 packet, a four-octet scalar octet count for
// the following key material.
if (this.version === 5) {
i += 4;
}
const ciphertext = this.encrypted.subarray(i, this.encrypted.length);
let cleartext;
if (aead) {
const mode = crypto[aead];
try {
const modeInstance = await mode(symmetric, key);
cleartext = await modeInstance.decrypt(ciphertext, iv.subarray(0, mode.ivLength), new Uint8Array());
} catch(err) {
if (err.message === 'Authentication tag mismatch') {
throw new Error('Incorrect key passphrase: ' + err.message);
}
}
} else {
const cleartextWithHash = await crypto.cfb.decrypt(symmetric, key, ciphertext, iv);
let hash;
let hashlen;
if (s2k_usage === 255) {
hashlen = 2;
cleartext = cleartextWithHash.subarray(0, -hashlen);
hash = util.write_checksum(cleartext);
} else {
hashlen = 20;
cleartext = cleartextWithHash.subarray(0, -hashlen);
hash = await crypto.hash.sha1(cleartext);
}
if (!util.equalsUint8Array(hash, cleartextWithHash.subarray(-hashlen))) {
throw new Error('Incorrect key passphrase');
}
}
const privParams = parse_cleartext_params(cleartext, this.algorithm);
this.params = this.params.concat(privParams);
this.isEncrypted = false;
this.encrypted = null;
return true;
};
SecretKey.prototype.generate = async function (bits, curve) {
const algo = enums.write(enums.publicKey, this.algorithm);
this.params = await crypto.generateParams(algo, bits, curve);
this.isEncrypted = false;
};
/**
* Clear private params, return to initial state
*/
SecretKey.prototype.clearPrivateParams = function () {
if (!this.encrypted) {
throw new Error('If secret key is not encrypted, clearing private params is irreversible.');
}
const algo = enums.write(enums.publicKey, this.algorithm);
this.params = this.params.slice(0, crypto.getPubKeyParamTypes(algo).length);
this.isEncrypted = true;
};
/**
* Fix custom types after cloning
*/
SecretKey.prototype.postCloneTypeFix = function() {
const algo = enums.write(enums.publicKey, this.algorithm);
const types = [].concat(crypto.getPubKeyParamTypes(algo), crypto.getPrivKeyParamTypes(algo));
for (let i = 0; i < this.params.length; i++) {
const param = this.params[i];
this.params[i] = types[i].fromClone(param);
}
if (this.keyid) {
this.keyid = type_keyid.fromClone(this.keyid);
}
};
export default SecretKey;