fork-openpgpjs/src/packet/one_pass_signature.js
2019-06-28 15:33:18 +02:00

161 lines
5.7 KiB
JavaScript

// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @requires packet/signature
* @requires type/keyid
* @requires enums
* @requires util
*/
import Signature from './signature';
import type_keyid from '../type/keyid';
import enums from '../enums';
import util from '../util';
/**
* Implementation of the One-Pass Signature Packets (Tag 4)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.4|RFC4880 5.4}:
* The One-Pass Signature packet precedes the signed data and contains
* enough information to allow the receiver to begin calculating any
* hashes needed to verify the signature. It allows the Signature
* packet to be placed at the end of the message, so that the signer
* can compute the entire signed message in one pass.
* @memberof module:packet
* @constructor
*/
function OnePassSignature() {
/**
* Packet type
* @type {module:enums.packet}
*/
this.tag = enums.packet.onePassSignature;
/** A one-octet version number. The current version is 3. */
this.version = null;
/**
* A one-octet signature type.
* Signature types are described in
* {@link https://tools.ietf.org/html/rfc4880#section-5.2.1|RFC4880 Section 5.2.1}.
*/
this.signatureType = null;
/**
* A one-octet number describing the hash algorithm used.
* @see {@link https://tools.ietf.org/html/rfc4880#section-9.4|RFC4880 9.4}
*/
this.hashAlgorithm = null;
/**
* A one-octet number describing the public-key algorithm used.
* @see {@link https://tools.ietf.org/html/rfc4880#section-9.1|RFC4880 9.1}
*/
this.publicKeyAlgorithm = null;
/** An eight-octet number holding the Key ID of the signing key. */
this.issuerKeyId = null;
/**
* A one-octet number holding a flag showing whether the signature is nested.
* A zero value indicates that the next packet is another One-Pass Signature packet
* that describes another signature to be applied to the same message data.
*/
this.flags = null;
}
/**
* parsing function for a one-pass signature packet (tag 4).
* @param {Uint8Array} bytes payload of a tag 4 packet
* @returns {module:packet.OnePassSignature} object representation
*/
OnePassSignature.prototype.read = function (bytes) {
let mypos = 0;
// A one-octet version number. The current version is 3.
this.version = bytes[mypos++];
// A one-octet signature type. Signature types are described in
// Section 5.2.1.
this.signatureType = bytes[mypos++];
// A one-octet number describing the hash algorithm used.
this.hashAlgorithm = bytes[mypos++];
// A one-octet number describing the public-key algorithm used.
this.publicKeyAlgorithm = bytes[mypos++];
// An eight-octet number holding the Key ID of the signing key.
this.issuerKeyId = new type_keyid();
this.issuerKeyId.read(bytes.subarray(mypos, mypos + 8));
mypos += 8;
// A one-octet number holding a flag showing whether the signature
// is nested. A zero value indicates that the next packet is
// another One-Pass Signature packet that describes another
// signature to be applied to the same message data.
this.flags = bytes[mypos++];
return this;
};
/**
* creates a string representation of a one-pass signature packet
* @returns {Uint8Array} a Uint8Array representation of a one-pass signature packet
*/
OnePassSignature.prototype.write = function () {
const start = new Uint8Array([3, enums.write(enums.signature, this.signatureType),
enums.write(enums.hash, this.hashAlgorithm),
enums.write(enums.publicKey, this.publicKeyAlgorithm)]);
const end = new Uint8Array([this.flags]);
return util.concatUint8Array([start, this.issuerKeyId.write(), end]);
};
/**
* Fix custom types after cloning
*/
OnePassSignature.prototype.postCloneTypeFix = function() {
this.issuerKeyId = type_keyid.fromClone(this.issuerKeyId);
};
OnePassSignature.prototype.hash = function() {
const version = this.version;
this.version = 4;
try {
return Signature.prototype.hash.apply(this, arguments);
} finally {
this.version = version;
}
};
OnePassSignature.prototype.toHash = Signature.prototype.toHash;
OnePassSignature.prototype.toSign = Signature.prototype.toSign;
OnePassSignature.prototype.calculateTrailer = Signature.prototype.calculateTrailer;
OnePassSignature.prototype.verify = async function() {
const correspondingSig = await this.correspondingSig;
if (!correspondingSig || correspondingSig.tag !== enums.packet.signature) {
throw new Error('Corresponding signature packet missing');
}
if (
correspondingSig.signatureType !== this.signatureType ||
correspondingSig.hashAlgorithm !== this.hashAlgorithm ||
correspondingSig.publicKeyAlgorithm !== this.publicKeyAlgorithm ||
!correspondingSig.issuerKeyId.equals(this.issuerKeyId)
) {
throw new Error('Corresponding signature packet does not match one-pass signature packet');
}
correspondingSig.hashed = this.hashed;
return correspondingSig.verify.apply(correspondingSig, arguments);
};
export default OnePassSignature;