
For User s/revocationCertifications/revocationSignatures/g For Key/SubKey s/revocationSignature/revocationSignatures/g is now an array.
309 lines
9.7 KiB
JavaScript
309 lines
9.7 KiB
JavaScript
// GPG4Browsers - An OpenPGP implementation in javascript
|
|
// Copyright (C) 2011 Recurity Labs GmbH
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3.0 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
/**
|
|
* Implementation of the Key Material Packet (Tag 5,6,7,14)
|
|
*
|
|
* {@link https://tools.ietf.org/html/rfc4880#section-5.5|RFC4480 5.5}:
|
|
* A key material packet contains all the information about a public or
|
|
* private key. There are four variants of this packet type, and two
|
|
* major versions. Consequently, this section is complex.
|
|
* @requires crypto
|
|
* @requires enums
|
|
* @requires packet/public_key
|
|
* @requires type/keyid
|
|
* @requires type/s2k
|
|
* @requires util
|
|
* @module packet/secret_key
|
|
*/
|
|
|
|
import publicKey from './public_key.js';
|
|
import enums from '../enums.js';
|
|
import util from '../util.js';
|
|
import crypto from '../crypto';
|
|
import type_s2k from '../type/s2k.js';
|
|
import type_keyid from '../type/keyid.js';
|
|
|
|
/**
|
|
* @constructor
|
|
* @extends module:packet/public_key
|
|
*/
|
|
export default function SecretKey() {
|
|
publicKey.call(this);
|
|
this.tag = enums.packet.secretKey;
|
|
// encrypted secret-key data
|
|
this.encrypted = null;
|
|
// indicator if secret-key data is available in decrypted form
|
|
this.isDecrypted = false;
|
|
}
|
|
|
|
SecretKey.prototype = new publicKey();
|
|
SecretKey.prototype.constructor = SecretKey;
|
|
|
|
function get_hash_len(hash) {
|
|
if (hash === 'sha1') {
|
|
return 20;
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
function get_hash_fn(hash) {
|
|
if (hash === 'sha1') {
|
|
return crypto.hash.sha1;
|
|
}
|
|
return function(c) {
|
|
return util.writeNumber(util.calc_checksum(c), 2);
|
|
};
|
|
}
|
|
|
|
// Helper function
|
|
|
|
function parse_cleartext_params(hash_algorithm, cleartext, algorithm) {
|
|
const hashlen = get_hash_len(hash_algorithm);
|
|
const hashfn = get_hash_fn(hash_algorithm);
|
|
|
|
const hashtext = util.Uint8Array_to_str(cleartext.subarray(cleartext.length - hashlen, cleartext.length));
|
|
cleartext = cleartext.subarray(0, cleartext.length - hashlen);
|
|
const hash = util.Uint8Array_to_str(hashfn(cleartext));
|
|
|
|
if (hash !== hashtext) {
|
|
return new Error("Incorrect key passphrase");
|
|
}
|
|
|
|
const algo = enums.write(enums.publicKey, algorithm);
|
|
const types = crypto.getPrivKeyParamTypes(algo);
|
|
const params = crypto.constructParams(types);
|
|
let p = 0;
|
|
|
|
for (let i = 0; i < types.length && p < cleartext.length; i++) {
|
|
p += params[i].read(cleartext.subarray(p, cleartext.length));
|
|
if (p > cleartext.length) {
|
|
throw new Error('Error reading param @:' + p);
|
|
}
|
|
}
|
|
|
|
return params;
|
|
}
|
|
|
|
function write_cleartext_params(hash_algorithm, algorithm, params) {
|
|
const arr = [];
|
|
const algo = enums.write(enums.publicKey, algorithm);
|
|
const numPublicParams = crypto.getPubKeyParamTypes(algo).length;
|
|
|
|
for (let i = numPublicParams; i < params.length; i++) {
|
|
arr.push(params[i].write());
|
|
}
|
|
|
|
const bytes = util.concatUint8Array(arr);
|
|
|
|
const hash = get_hash_fn(hash_algorithm)(bytes);
|
|
|
|
return util.concatUint8Array([bytes, hash]);
|
|
}
|
|
|
|
|
|
// 5.5.3. Secret-Key Packet Formats
|
|
|
|
/**
|
|
* Internal parser for private keys as specified in {@link https://tools.ietf.org/html/rfc4880#section-5.5.3|RFC 4880 section 5.5.3}
|
|
* @param {String} bytes Input string to read the packet from
|
|
*/
|
|
SecretKey.prototype.read = function (bytes) {
|
|
// - A Public-Key or Public-Subkey packet, as described above.
|
|
const len = this.readPublicKey(bytes);
|
|
|
|
bytes = bytes.subarray(len, bytes.length);
|
|
|
|
|
|
// - One octet indicating string-to-key usage conventions. Zero
|
|
// indicates that the secret-key data is not encrypted. 255 or 254
|
|
// indicates that a string-to-key specifier is being given. Any
|
|
// other value is a symmetric-key encryption algorithm identifier.
|
|
const isEncrypted = bytes[0];
|
|
|
|
if (isEncrypted) {
|
|
this.encrypted = bytes;
|
|
} else {
|
|
// - Plain or encrypted multiprecision integers comprising the secret
|
|
// key data. These algorithm-specific fields are as described
|
|
// below.
|
|
const privParams = parse_cleartext_params('mod', bytes.subarray(1, bytes.length), this.algorithm);
|
|
if (privParams instanceof Error) {
|
|
throw privParams;
|
|
}
|
|
this.params = this.params.concat(privParams);
|
|
this.isDecrypted = true;
|
|
}
|
|
};
|
|
|
|
/** Creates an OpenPGP key packet for the given key.
|
|
* @returns {String} A string of bytes containing the secret key OpenPGP packet
|
|
*/
|
|
SecretKey.prototype.write = function () {
|
|
const arr = [this.writePublicKey()];
|
|
|
|
if (!this.encrypted) {
|
|
arr.push(new Uint8Array([0]));
|
|
arr.push(write_cleartext_params('mod', this.algorithm, this.params));
|
|
} else {
|
|
arr.push(this.encrypted);
|
|
}
|
|
|
|
return util.concatUint8Array(arr);
|
|
};
|
|
|
|
|
|
/** Encrypt the payload. By default, we use aes256 and iterated, salted string
|
|
* to key specifier. If the key is in a decrypted state (isDecrypted === true)
|
|
* and the passphrase is empty or undefined, the key will be set as not encrypted.
|
|
* This can be used to remove passphrase protection after calling decrypt().
|
|
* @param {String} passphrase
|
|
* @returns {Promise<Boolean>}
|
|
*/
|
|
SecretKey.prototype.encrypt = async function (passphrase) {
|
|
if (this.isDecrypted && !passphrase) {
|
|
this.encrypted = null;
|
|
return false;
|
|
} else if (!passphrase) {
|
|
throw new Error('The key must be decrypted before removing passphrase protection.');
|
|
}
|
|
|
|
const s2k = new type_s2k();
|
|
s2k.salt = await crypto.random.getRandomBytes(8);
|
|
const symmetric = 'aes256';
|
|
const cleartext = write_cleartext_params('sha1', this.algorithm, this.params);
|
|
const key = produceEncryptionKey(s2k, passphrase, symmetric);
|
|
const blockLen = crypto.cipher[symmetric].blockSize;
|
|
const iv = await crypto.random.getRandomBytes(blockLen);
|
|
|
|
const arr = [new Uint8Array([254, enums.write(enums.symmetric, symmetric)])];
|
|
arr.push(s2k.write());
|
|
arr.push(iv);
|
|
arr.push(crypto.cfb.normalEncrypt(symmetric, key, cleartext, iv));
|
|
|
|
this.encrypted = util.concatUint8Array(arr);
|
|
return true;
|
|
};
|
|
|
|
function produceEncryptionKey(s2k, passphrase, algorithm) {
|
|
return s2k.produce_key(
|
|
passphrase,
|
|
crypto.cipher[algorithm].keySize
|
|
);
|
|
}
|
|
|
|
/**
|
|
* Decrypts the private key params which are needed to use the key.
|
|
* @link module:packet/secret_key.isDecrypted should be
|
|
* false otherwise a call to this function is not needed
|
|
*
|
|
* @param {String} passphrase The passphrase for this private key as string
|
|
* @returns {Promise<Boolean>}
|
|
*/
|
|
SecretKey.prototype.decrypt = async function (passphrase) {
|
|
if (this.isDecrypted) {
|
|
throw new Error('Key packet is already decrypted.');
|
|
}
|
|
|
|
let i = 0;
|
|
let symmetric;
|
|
let key;
|
|
|
|
const s2k_usage = this.encrypted[i++];
|
|
|
|
// - [Optional] If string-to-key usage octet was 255 or 254, a one-
|
|
// octet symmetric encryption algorithm.
|
|
if (s2k_usage === 255 || s2k_usage === 254) {
|
|
symmetric = this.encrypted[i++];
|
|
symmetric = enums.read(enums.symmetric, symmetric);
|
|
|
|
// - [Optional] If string-to-key usage octet was 255 or 254, a
|
|
// string-to-key specifier. The length of the string-to-key
|
|
// specifier is implied by its type, as described above.
|
|
const s2k = new type_s2k();
|
|
i += s2k.read(this.encrypted.subarray(i, this.encrypted.length));
|
|
|
|
key = produceEncryptionKey(s2k, passphrase, symmetric);
|
|
} else {
|
|
symmetric = s2k_usage;
|
|
symmetric = enums.read(enums.symmetric, symmetric);
|
|
key = crypto.hash.md5(passphrase);
|
|
}
|
|
|
|
// - [Optional] If secret data is encrypted (string-to-key usage octet
|
|
// not zero), an Initial Vector (IV) of the same length as the
|
|
// cipher's block size.
|
|
const iv = this.encrypted.subarray(
|
|
i,
|
|
i + crypto.cipher[symmetric].blockSize
|
|
);
|
|
|
|
i += iv.length;
|
|
|
|
const ciphertext = this.encrypted.subarray(i, this.encrypted.length);
|
|
const cleartext = crypto.cfb.normalDecrypt(symmetric, key, ciphertext, iv);
|
|
const hash = s2k_usage === 254 ?
|
|
'sha1' :
|
|
'mod';
|
|
|
|
const privParams = parse_cleartext_params(hash, cleartext, this.algorithm);
|
|
if (privParams instanceof Error) {
|
|
throw privParams;
|
|
}
|
|
this.params = this.params.concat(privParams);
|
|
this.isDecrypted = true;
|
|
this.encrypted = null;
|
|
|
|
return true;
|
|
};
|
|
|
|
SecretKey.prototype.generate = function (bits, curve) {
|
|
const that = this;
|
|
const algo = enums.write(enums.publicKey, that.algorithm);
|
|
return crypto.generateParams(algo, bits, curve).then(function(params) {
|
|
that.params = params;
|
|
that.isDecrypted = true;
|
|
});
|
|
};
|
|
|
|
/**
|
|
* Clear private params, return to initial state
|
|
*/
|
|
SecretKey.prototype.clearPrivateParams = function () {
|
|
if (!this.encrypted) {
|
|
throw new Error('If secret key is not encrypted, clearing private params is irreversible.');
|
|
}
|
|
const algo = enums.write(enums.publicKey, this.algorithm);
|
|
this.params = this.params.slice(0, crypto.getPubKeyParamTypes(algo).length);
|
|
this.isDecrypted = false;
|
|
};
|
|
|
|
/**
|
|
* Fix custom types after cloning
|
|
*/
|
|
SecretKey.prototype.postCloneTypeFix = function() {
|
|
const algo = enums.write(enums.publicKey, this.algorithm);
|
|
const types = [].concat(crypto.getPubKeyParamTypes(algo), crypto.getPrivKeyParamTypes(algo));
|
|
for (let i = 0; i < this.params.length; i++) {
|
|
const param = this.params[i];
|
|
this.params[i] = types[i].fromClone(param);
|
|
}
|
|
if (this.keyid) {
|
|
this.keyid = type_keyid.fromClone(this.keyid);
|
|
}
|
|
};
|