fork-openpgpjs/src/packet/secret_key.js
Mahrud Sayrafi 73a240df6c Simplifies (Key|User|SubKey).isRevoked, API changes in key.js
For User s/revocationCertifications/revocationSignatures/g
For Key/SubKey s/revocationSignature/revocationSignatures/g is now an array.
2018-03-08 10:01:54 +01:00

309 lines
9.7 KiB
JavaScript

// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* Implementation of the Key Material Packet (Tag 5,6,7,14)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.5|RFC4480 5.5}:
* A key material packet contains all the information about a public or
* private key. There are four variants of this packet type, and two
* major versions. Consequently, this section is complex.
* @requires crypto
* @requires enums
* @requires packet/public_key
* @requires type/keyid
* @requires type/s2k
* @requires util
* @module packet/secret_key
*/
import publicKey from './public_key.js';
import enums from '../enums.js';
import util from '../util.js';
import crypto from '../crypto';
import type_s2k from '../type/s2k.js';
import type_keyid from '../type/keyid.js';
/**
* @constructor
* @extends module:packet/public_key
*/
export default function SecretKey() {
publicKey.call(this);
this.tag = enums.packet.secretKey;
// encrypted secret-key data
this.encrypted = null;
// indicator if secret-key data is available in decrypted form
this.isDecrypted = false;
}
SecretKey.prototype = new publicKey();
SecretKey.prototype.constructor = SecretKey;
function get_hash_len(hash) {
if (hash === 'sha1') {
return 20;
}
return 2;
}
function get_hash_fn(hash) {
if (hash === 'sha1') {
return crypto.hash.sha1;
}
return function(c) {
return util.writeNumber(util.calc_checksum(c), 2);
};
}
// Helper function
function parse_cleartext_params(hash_algorithm, cleartext, algorithm) {
const hashlen = get_hash_len(hash_algorithm);
const hashfn = get_hash_fn(hash_algorithm);
const hashtext = util.Uint8Array_to_str(cleartext.subarray(cleartext.length - hashlen, cleartext.length));
cleartext = cleartext.subarray(0, cleartext.length - hashlen);
const hash = util.Uint8Array_to_str(hashfn(cleartext));
if (hash !== hashtext) {
return new Error("Incorrect key passphrase");
}
const algo = enums.write(enums.publicKey, algorithm);
const types = crypto.getPrivKeyParamTypes(algo);
const params = crypto.constructParams(types);
let p = 0;
for (let i = 0; i < types.length && p < cleartext.length; i++) {
p += params[i].read(cleartext.subarray(p, cleartext.length));
if (p > cleartext.length) {
throw new Error('Error reading param @:' + p);
}
}
return params;
}
function write_cleartext_params(hash_algorithm, algorithm, params) {
const arr = [];
const algo = enums.write(enums.publicKey, algorithm);
const numPublicParams = crypto.getPubKeyParamTypes(algo).length;
for (let i = numPublicParams; i < params.length; i++) {
arr.push(params[i].write());
}
const bytes = util.concatUint8Array(arr);
const hash = get_hash_fn(hash_algorithm)(bytes);
return util.concatUint8Array([bytes, hash]);
}
// 5.5.3. Secret-Key Packet Formats
/**
* Internal parser for private keys as specified in {@link https://tools.ietf.org/html/rfc4880#section-5.5.3|RFC 4880 section 5.5.3}
* @param {String} bytes Input string to read the packet from
*/
SecretKey.prototype.read = function (bytes) {
// - A Public-Key or Public-Subkey packet, as described above.
const len = this.readPublicKey(bytes);
bytes = bytes.subarray(len, bytes.length);
// - One octet indicating string-to-key usage conventions. Zero
// indicates that the secret-key data is not encrypted. 255 or 254
// indicates that a string-to-key specifier is being given. Any
// other value is a symmetric-key encryption algorithm identifier.
const isEncrypted = bytes[0];
if (isEncrypted) {
this.encrypted = bytes;
} else {
// - Plain or encrypted multiprecision integers comprising the secret
// key data. These algorithm-specific fields are as described
// below.
const privParams = parse_cleartext_params('mod', bytes.subarray(1, bytes.length), this.algorithm);
if (privParams instanceof Error) {
throw privParams;
}
this.params = this.params.concat(privParams);
this.isDecrypted = true;
}
};
/** Creates an OpenPGP key packet for the given key.
* @returns {String} A string of bytes containing the secret key OpenPGP packet
*/
SecretKey.prototype.write = function () {
const arr = [this.writePublicKey()];
if (!this.encrypted) {
arr.push(new Uint8Array([0]));
arr.push(write_cleartext_params('mod', this.algorithm, this.params));
} else {
arr.push(this.encrypted);
}
return util.concatUint8Array(arr);
};
/** Encrypt the payload. By default, we use aes256 and iterated, salted string
* to key specifier. If the key is in a decrypted state (isDecrypted === true)
* and the passphrase is empty or undefined, the key will be set as not encrypted.
* This can be used to remove passphrase protection after calling decrypt().
* @param {String} passphrase
* @returns {Promise<Boolean>}
*/
SecretKey.prototype.encrypt = async function (passphrase) {
if (this.isDecrypted && !passphrase) {
this.encrypted = null;
return false;
} else if (!passphrase) {
throw new Error('The key must be decrypted before removing passphrase protection.');
}
const s2k = new type_s2k();
s2k.salt = await crypto.random.getRandomBytes(8);
const symmetric = 'aes256';
const cleartext = write_cleartext_params('sha1', this.algorithm, this.params);
const key = produceEncryptionKey(s2k, passphrase, symmetric);
const blockLen = crypto.cipher[symmetric].blockSize;
const iv = await crypto.random.getRandomBytes(blockLen);
const arr = [new Uint8Array([254, enums.write(enums.symmetric, symmetric)])];
arr.push(s2k.write());
arr.push(iv);
arr.push(crypto.cfb.normalEncrypt(symmetric, key, cleartext, iv));
this.encrypted = util.concatUint8Array(arr);
return true;
};
function produceEncryptionKey(s2k, passphrase, algorithm) {
return s2k.produce_key(
passphrase,
crypto.cipher[algorithm].keySize
);
}
/**
* Decrypts the private key params which are needed to use the key.
* @link module:packet/secret_key.isDecrypted should be
* false otherwise a call to this function is not needed
*
* @param {String} passphrase The passphrase for this private key as string
* @returns {Promise<Boolean>}
*/
SecretKey.prototype.decrypt = async function (passphrase) {
if (this.isDecrypted) {
throw new Error('Key packet is already decrypted.');
}
let i = 0;
let symmetric;
let key;
const s2k_usage = this.encrypted[i++];
// - [Optional] If string-to-key usage octet was 255 or 254, a one-
// octet symmetric encryption algorithm.
if (s2k_usage === 255 || s2k_usage === 254) {
symmetric = this.encrypted[i++];
symmetric = enums.read(enums.symmetric, symmetric);
// - [Optional] If string-to-key usage octet was 255 or 254, a
// string-to-key specifier. The length of the string-to-key
// specifier is implied by its type, as described above.
const s2k = new type_s2k();
i += s2k.read(this.encrypted.subarray(i, this.encrypted.length));
key = produceEncryptionKey(s2k, passphrase, symmetric);
} else {
symmetric = s2k_usage;
symmetric = enums.read(enums.symmetric, symmetric);
key = crypto.hash.md5(passphrase);
}
// - [Optional] If secret data is encrypted (string-to-key usage octet
// not zero), an Initial Vector (IV) of the same length as the
// cipher's block size.
const iv = this.encrypted.subarray(
i,
i + crypto.cipher[symmetric].blockSize
);
i += iv.length;
const ciphertext = this.encrypted.subarray(i, this.encrypted.length);
const cleartext = crypto.cfb.normalDecrypt(symmetric, key, ciphertext, iv);
const hash = s2k_usage === 254 ?
'sha1' :
'mod';
const privParams = parse_cleartext_params(hash, cleartext, this.algorithm);
if (privParams instanceof Error) {
throw privParams;
}
this.params = this.params.concat(privParams);
this.isDecrypted = true;
this.encrypted = null;
return true;
};
SecretKey.prototype.generate = function (bits, curve) {
const that = this;
const algo = enums.write(enums.publicKey, that.algorithm);
return crypto.generateParams(algo, bits, curve).then(function(params) {
that.params = params;
that.isDecrypted = true;
});
};
/**
* Clear private params, return to initial state
*/
SecretKey.prototype.clearPrivateParams = function () {
if (!this.encrypted) {
throw new Error('If secret key is not encrypted, clearing private params is irreversible.');
}
const algo = enums.write(enums.publicKey, this.algorithm);
this.params = this.params.slice(0, crypto.getPubKeyParamTypes(algo).length);
this.isDecrypted = false;
};
/**
* Fix custom types after cloning
*/
SecretKey.prototype.postCloneTypeFix = function() {
const algo = enums.write(enums.publicKey, this.algorithm);
const types = [].concat(crypto.getPubKeyParamTypes(algo), crypto.getPrivKeyParamTypes(algo));
for (let i = 0; i < this.params.length; i++) {
const param = this.params[i];
this.params[i] = types[i].fromClone(param);
}
if (this.keyid) {
this.keyid = type_keyid.fromClone(this.keyid);
}
};