163 lines
5.4 KiB
JavaScript
163 lines
5.4 KiB
JavaScript
// GPG4Browsers - An OpenPGP implementation in javascript
|
|
// Copyright (C) 2011 Recurity Labs GmbH
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
//
|
|
// A Digital signature algorithm implementation
|
|
|
|
var BigInteger = require('./jsbn.js'),
|
|
random = require('../random.js'),
|
|
hashModule = require('../hash'),
|
|
util = require('../../util');
|
|
|
|
function DSA() {
|
|
// s1 = ((g**s) mod p) mod q
|
|
// s1 = ((s**-1)*(sha-1(m)+(s1*x) mod q)
|
|
function sign(hashalgo, m, g, p, q, x) {
|
|
// If the output size of the chosen hash is larger than the number of
|
|
// bits of q, the hash result is truncated to fit by taking the number
|
|
// of leftmost bits equal to the number of bits of q. This (possibly
|
|
// truncated) hash function result is treated as a number and used
|
|
// directly in the DSA signature algorithm.
|
|
var hashed_data = util.getLeftNBits(hashModule.digest(hashalgo, m), q.bitLength());
|
|
var hash = new BigInteger(util.hexstrdump(hashed_data), 16);
|
|
var k = random.getRandomBigIntegerInRange(BigInteger.ONE.add(BigInteger.ONE), q.subtract(BigInteger.ONE));
|
|
var s1 = (g.modPow(k, p)).mod(q);
|
|
var s2 = (k.modInverse(q).multiply(hash.add(x.multiply(s1)))).mod(q);
|
|
var result = new Array();
|
|
result[0] = s1.toMPI();
|
|
result[1] = s2.toMPI();
|
|
return result;
|
|
}
|
|
|
|
function select_hash_algorithm(q) {
|
|
var usersetting = openpgp.config.config.prefer_hash_algorithm;
|
|
/*
|
|
* 1024-bit key, 160-bit q, SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512 hash
|
|
* 2048-bit key, 224-bit q, SHA-224, SHA-256, SHA-384, or SHA-512 hash
|
|
* 2048-bit key, 256-bit q, SHA-256, SHA-384, or SHA-512 hash
|
|
* 3072-bit key, 256-bit q, SHA-256, SHA-384, or SHA-512 hash
|
|
*/
|
|
switch (Math.round(q.bitLength() / 8)) {
|
|
case 20:
|
|
// 1024 bit
|
|
if (usersetting != 2 &&
|
|
usersetting > 11 &&
|
|
usersetting != 10 &&
|
|
usersetting < 8)
|
|
return 2; // prefer sha1
|
|
return usersetting;
|
|
case 28:
|
|
// 2048 bit
|
|
if (usersetting > 11 &&
|
|
usersetting < 8)
|
|
return 11;
|
|
return usersetting;
|
|
case 32:
|
|
// 4096 bit // prefer sha224
|
|
if (usersetting > 10 &&
|
|
usersetting < 8)
|
|
return 8; // prefer sha256
|
|
return usersetting;
|
|
default:
|
|
util.print_debug("DSA select hash algorithm: returning null for an unknown length of q");
|
|
return null;
|
|
|
|
}
|
|
}
|
|
this.select_hash_algorithm = select_hash_algorithm;
|
|
|
|
function verify(hashalgo, s1, s2, m, p, q, g, y) {
|
|
var hashed_data = util.getLeftNBits(hashModule.digest(hashalgo, m), q.bitLength());
|
|
var hash = new BigInteger(util.hexstrdump(hashed_data), 16);
|
|
if (BigInteger.ZERO.compareTo(s1) > 0 ||
|
|
s1.compareTo(q) > 0 ||
|
|
BigInteger.ZERO.compareTo(s2) > 0 ||
|
|
s2.compareTo(q) > 0) {
|
|
util.print_error("invalid DSA Signature");
|
|
return null;
|
|
}
|
|
var w = s2.modInverse(q);
|
|
var u1 = hash.multiply(w).mod(q);
|
|
var u2 = s1.multiply(w).mod(q);
|
|
return g.modPow(u1, p).multiply(y.modPow(u2, p)).mod(p).mod(q);
|
|
}
|
|
|
|
/*
|
|
* unused code. This can be used as a start to write a key generator
|
|
* function.
|
|
|
|
function generateKey(bitcount) {
|
|
var qi = new BigInteger(bitcount, primeCenterie);
|
|
var pi = generateP(q, 512);
|
|
var gi = generateG(p, q, bitcount);
|
|
var xi;
|
|
do {
|
|
xi = new BigInteger(q.bitCount(), rand);
|
|
} while (x.compareTo(BigInteger.ZERO) != 1 && x.compareTo(q) != -1);
|
|
var yi = g.modPow(x, p);
|
|
return {x: xi, q: qi, p: pi, g: gi, y: yi};
|
|
}
|
|
|
|
function generateP(q, bitlength, randomfn) {
|
|
if (bitlength % 64 != 0) {
|
|
return false;
|
|
}
|
|
var pTemp;
|
|
var pTemp2;
|
|
do {
|
|
pTemp = randomfn(bitcount, true);
|
|
pTemp2 = pTemp.subtract(BigInteger.ONE);
|
|
pTemp = pTemp.subtract(pTemp2.remainder(q));
|
|
} while (!pTemp.isProbablePrime(primeCenterie) || pTemp.bitLength() != l);
|
|
return pTemp;
|
|
}
|
|
|
|
function generateG(p, q, bitlength, randomfn) {
|
|
var aux = p.subtract(BigInteger.ONE);
|
|
var pow = aux.divide(q);
|
|
var gTemp;
|
|
do {
|
|
gTemp = randomfn(bitlength);
|
|
} while (gTemp.compareTo(aux) != -1 && gTemp.compareTo(BigInteger.ONE) != 1);
|
|
return gTemp.modPow(pow, p);
|
|
}
|
|
|
|
function generateK(q, bitlength, randomfn) {
|
|
var tempK;
|
|
do {
|
|
tempK = randomfn(bitlength, false);
|
|
} while (tempK.compareTo(q) != -1 && tempK.compareTo(BigInteger.ZERO) != 1);
|
|
return tempK;
|
|
}
|
|
|
|
function generateR(q,p) {
|
|
k = generateK(q);
|
|
var r = g.modPow(k, p).mod(q);
|
|
return r;
|
|
}
|
|
|
|
function generateS(hashfn,k,r,m,q,x) {
|
|
var hash = hashfn(m);
|
|
s = (k.modInverse(q).multiply(hash.add(x.multiply(r)))).mod(q);
|
|
return s;
|
|
} */
|
|
this.sign = sign;
|
|
this.verify = verify;
|
|
// this.generate = generateKey;
|
|
}
|
|
|
|
module.exports = DSA;
|