fork-openpgpjs/doc/openpgp.cfb.js.html
2013-04-12 13:00:09 +02:00

340 lines
12 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>JSDoc: Source: openpgp.cfb.js</title>
<script src="scripts/prettify/prettify.js"> </script>
<script src="scripts/prettify/lang-css.js"> </script>
<!--[if lt IE 9]>
<script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
<link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css">
<link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css">
</head>
<body>
<div id="main">
<h1 class="page-title">Source: openpgp.cfb.js</h1>
<section>
<article>
<pre class="prettyprint source"><code>// Modified by Recurity Labs GmbH
// modified version of http://www.hanewin.net/encrypt/PGdecode.js:
/* OpenPGP encryption using RSA/AES
* Copyright 2005-2006 Herbert Hanewinkel, www.haneWIN.de
* version 2.0, check www.haneWIN.de for the latest version
* This software is provided as-is, without express or implied warranty.
* Permission to use, copy, modify, distribute or sell this software, with or
* without fee, for any purpose and by any individual or organization, is hereby
* granted, provided that the above copyright notice and this paragraph appear
* in all copies. Distribution as a part of an application or binary must
* include the above copyright notice in the documentation and/or other
* materials provided with the application or distribution.
*/
/**
* An array of bytes, that is integers with values from 0 to 255
* @typedef {(Array|Uint8Array)} openpgp_byte_array
*/
/**
* Block cipher function
* @callback openpgp_cipher_block_fn
* @param {openpgp_byte_array} block A block to perform operations on
* @param {openpgp_byte_array} key to use in encryption/decryption
* @return {openpgp_byte_array} Encrypted/decrypted block
*/
// --------------------------------------
/**
* This function encrypts a given with the specified prefixrandom
* using the specified blockcipher to encrypt a message
* @param {String[]} prefixrandom random bytes of block_size length provided
* as a string to be used in prefixing the data
* @param {openpgp_cipher_block_fn} blockcipherfn the algorithm encrypt function to encrypt
* data in one block_size encryption.
* @param {Integer} block_size the block size in bytes of the algorithm used
* @param {String} plaintext data to be encrypted provided as a string
* @param {openpgp_byte_array} key key to be used to encrypt the data. This will be passed to the
* blockcipherfn
* @param {Boolean} resync a boolean value specifying if a resync of the
* IV should be used or not. The encrypteddatapacket uses the
* "old" style with a resync. Encryption within an
* encryptedintegrityprotecteddata packet is not resyncing the IV.
* @return {String} a string with the encrypted data
*/
function openpgp_cfb_encrypt(prefixrandom, blockcipherencryptfn, plaintext, block_size, key, resync) {
var FR = new Array(block_size);
var FRE = new Array(block_size);
prefixrandom = prefixrandom + prefixrandom.charAt(block_size-2) +prefixrandom.charAt(block_size-1);
util.print_debug("prefixrandom:"+util.hexstrdump(prefixrandom));
var ciphertext = "";
// 1. The feedback register (FR) is set to the IV, which is all zeros.
for (var i = 0; i &lt; block_size; i++) FR[i] = 0;
// 2. FR is encrypted to produce FRE (FR Encrypted). This is the
// encryption of an all-zero value.
FRE = blockcipherencryptfn(FR, key);
// 3. FRE is xored with the first BS octets of random data prefixed to
// the plaintext to produce C[1] through C[BS], the first BS octets
// of ciphertext.
for (var i = 0; i &lt; block_size; i++) ciphertext += String.fromCharCode(FRE[i] ^ prefixrandom.charCodeAt(i));
// 4. FR is loaded with C[1] through C[BS].
for (var i = 0; i &lt; block_size; i++) FR[i] = ciphertext.charCodeAt(i);
// 5. FR is encrypted to produce FRE, the encryption of the first BS
// octets of ciphertext.
FRE = blockcipherencryptfn(FR, key);
// 6. The left two octets of FRE get xored with the next two octets of
// data that were prefixed to the plaintext. This produces C[BS+1]
// and C[BS+2], the next two octets of ciphertext.
ciphertext += String.fromCharCode(FRE[0] ^ prefixrandom.charCodeAt(block_size));
ciphertext += String.fromCharCode(FRE[1] ^ prefixrandom.charCodeAt(block_size+1));
if (resync) {
// 7. (The resync step) FR is loaded with C3-C10.
for (var i = 0; i &lt; block_size; i++) FR[i] = ciphertext.charCodeAt(i+2);
} else {
for (var i = 0; i &lt; block_size; i++) FR[i] = ciphertext.charCodeAt(i);
}
// 8. FR is encrypted to produce FRE.
FRE = blockcipherencryptfn(FR, key);
if (resync) {
// 9. FRE is xored with the first 8 octets of the given plaintext, now
// that we have finished encrypting the 10 octets of prefixed data.
// This produces C11-C18, the next 8 octets of ciphertext.
for (var i = 0; i &lt; block_size; i++)
ciphertext += String.fromCharCode(FRE[i] ^ plaintext.charCodeAt(i));
for(n=block_size+2; n &lt; plaintext.length; n+=block_size) {
// 10. FR is loaded with C11-C18
for (var i = 0; i &lt; block_size; i++) FR[i] = ciphertext.charCodeAt(n+i);
// 11. FR is encrypted to produce FRE.
FRE = blockcipherencryptfn(FR, key);
// 12. FRE is xored with the next 8 octets of plaintext, to produce the
// next 8 octets of ciphertext. These are loaded into FR and the
// process is repeated until the plaintext is used up.
for (var i = 0; i &lt; block_size; i++) ciphertext += String.fromCharCode(FRE[i] ^ plaintext.charCodeAt((n-2)+i));
}
}
else {
plaintext = " "+plaintext;
// 9. FRE is xored with the first 8 octets of the given plaintext, now
// that we have finished encrypting the 10 octets of prefixed data.
// This produces C11-C18, the next 8 octets of ciphertext.
for (var i = 2; i &lt; block_size; i++) ciphertext += String.fromCharCode(FRE[i] ^ plaintext.charCodeAt(i));
var tempCiphertext = ciphertext.substring(0,2*block_size).split('');
var tempCiphertextString = ciphertext.substring(block_size);
for(n=block_size; n&lt;plaintext.length; n+=block_size) {
// 10. FR is loaded with C11-C18
for (var i = 0; i &lt; block_size; i++) FR[i] = tempCiphertextString.charCodeAt(i);
tempCiphertextString='';
// 11. FR is encrypted to produce FRE.
FRE = blockcipherencryptfn(FR, key);
// 12. FRE is xored with the next 8 octets of plaintext, to produce the
// next 8 octets of ciphertext. These are loaded into FR and the
// process is repeated until the plaintext is used up.
for (var i = 0; i &lt; block_size; i++){ tempCiphertext.push(String.fromCharCode(FRE[i] ^ plaintext.charCodeAt(n+i)));
tempCiphertextString += String.fromCharCode(FRE[i] ^ plaintext.charCodeAt(n+i));
}
}
ciphertext = tempCiphertext.join('');
}
return ciphertext;
}
/**
* Decrypts the prefixed data for the Modification Detection Code (MDC) computation
* @param {openpgp_block_cipher_fn} blockcipherencryptfn Cipher function to use
* @param {Integer} block_size Blocksize of the algorithm
* @param {openpgp_byte_array} key The key for encryption
* @param {String} ciphertext The encrypted data
* @return {String} plaintext Data of D(ciphertext) with blocksize length +2
*/
function openpgp_cfb_mdc(blockcipherencryptfn, block_size, key, ciphertext) {
var iblock = new Array(block_size);
var ablock = new Array(block_size);
var i;
// initialisation vector
for(i=0; i &lt; block_size; i++) iblock[i] = 0;
iblock = blockcipherencryptfn(iblock, key);
for(i = 0; i &lt; block_size; i++)
{
ablock[i] = ciphertext.charCodeAt(i);
iblock[i] ^= ablock[i];
}
ablock = blockcipherencryptfn(ablock, key);
return util.bin2str(iblock)+
String.fromCharCode(ablock[0]^ciphertext.charCodeAt(block_size))+
String.fromCharCode(ablock[1]^ciphertext.charCodeAt(block_size+1));
}
/**
* This function decrypts a given plaintext using the specified
* blockcipher to decrypt a message
* @param {openpgp_cipher_block_fn} blockcipherfn The algorithm _encrypt_ function to encrypt
* data in one block_size encryption.
* @param {Integer} block_size the block size in bytes of the algorithm used
* @param {String} plaintext ciphertext to be decrypted provided as a string
* @param {openpgp_byte_array} key key to be used to decrypt the ciphertext. This will be passed to the
* blockcipherfn
* @param {Boolean} resync a boolean value specifying if a resync of the
* IV should be used or not. The encrypteddatapacket uses the
* "old" style with a resync. Decryption within an
* encryptedintegrityprotecteddata packet is not resyncing the IV.
* @return {String} a string with the plaintext data
*/
function openpgp_cfb_decrypt(blockcipherencryptfn, block_size, key, ciphertext, resync)
{
util.print_debug("resync:"+resync);
var iblock = new Array(block_size);
var ablock = new Array(block_size);
var i, n = '';
var text = [];
// initialisation vector
for(i=0; i &lt; block_size; i++) iblock[i] = 0;
iblock = blockcipherencryptfn(iblock, key);
for(i = 0; i &lt; block_size; i++)
{
ablock[i] = ciphertext.charCodeAt(i);
iblock[i] ^= ablock[i];
}
ablock = blockcipherencryptfn(ablock, key);
util.print_debug("openpgp_cfb_decrypt:\niblock:"+util.hexidump(iblock)+"\nablock:"+util.hexidump(ablock)+"\n");
util.print_debug((ablock[0]^ciphertext.charCodeAt(block_size)).toString(16)+(ablock[1]^ciphertext.charCodeAt(block_size+1)).toString(16));
// test check octets
if(iblock[block_size-2]!=(ablock[0]^ciphertext.charCodeAt(block_size))
|| iblock[block_size-1]!=(ablock[1]^ciphertext.charCodeAt(block_size+1)))
{
util.print_eror("error duding decryption. Symmectric encrypted data not valid.");
return text.join('');
}
/* RFC4880: Tag 18 and Resync:
* [...] Unlike the Symmetrically Encrypted Data Packet, no
* special CFB resynchronization is done after encrypting this prefix
* data. See "OpenPGP CFB Mode" below for more details.
*/
if (resync) {
for(i=0; i&lt;block_size; i++) iblock[i] = ciphertext.charCodeAt(i+2);
for(n=block_size+2; n&lt;ciphertext.length; n+=block_size)
{
ablock = blockcipherencryptfn(iblock, key);
for(i = 0; i&lt;block_size && i+n &lt; ciphertext.length; i++)
{
iblock[i] = ciphertext.charCodeAt(n+i);
text.push(String.fromCharCode(ablock[i]^iblock[i]));
}
}
} else {
for(i=0; i&lt;block_size; i++) iblock[i] = ciphertext.charCodeAt(i);
for(n=block_size; n&lt;ciphertext.length; n+=block_size)
{
ablock = blockcipherencryptfn(iblock, key);
for(i = 0; i&lt;block_size && i+n &lt; ciphertext.length; i++)
{
iblock[i] = ciphertext.charCodeAt(n+i);
text.push(String.fromCharCode(ablock[i]^iblock[i]));
}
}
}
return text.join('');
}
function normal_cfb_encrypt(blockcipherencryptfn, block_size, key, plaintext, iv) {
var blocki ="";
var blockc = "";
var pos = 0;
var cyphertext = [];
var tempBlock = [];
blockc = iv.substring(0,block_size);
while (plaintext.length > block_size*pos) {
var encblock = blockcipherencryptfn(blockc, key);
blocki = plaintext.substring((pos*block_size),(pos*block_size)+block_size);
for (var i=0; i &lt; blocki.length; i++)
tempBlock.push(String.fromCharCode(blocki.charCodeAt(i) ^ encblock[i]));
blockc = tempBlock.join('');
tempBlock = [];
cyphertext.push(blockc);
pos++;
}
return cyphertext.join('');
}
function normal_cfb_decrypt(blockcipherencryptfn, block_size, key, ciphertext, iv) {
var blockp ="";
var pos = 0;
var plaintext = [];
var offset = 0;
if (iv == null)
for (var i = 0; i &lt; block_size; i++) blockp += String.fromCharCode(0);
else
blockp = iv.substring(0,block_size);
while (ciphertext.length > (block_size*pos)) {
var decblock = blockcipherencryptfn(blockp, key);
blockp = ciphertext.substring((pos*(block_size))+offset,(pos*(block_size))+(block_size)+offset);
for (var i=0; i &lt; blockp.length; i++) {
plaintext.push(String.fromCharCode(blockp.charCodeAt(i) ^ decblock[i]));
}
pos++;
}
return plaintext.join('');
}
</code></pre>
</article>
</section>
</div>
<nav>
<h2><a href="index.html">Index</a></h2><h3>Global</h3><ul><li><a href="global.html#openpgp_cfb_decrypt">openpgp_cfb_decrypt</a></li><li><a href="global.html#openpgp_cfb_encrypt">openpgp_cfb_encrypt</a></li><li><a href="global.html#openpgp_cfb_mdc">openpgp_cfb_mdc</a></li></ul>
</nav>
<br clear="both">
<footer>
Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.2.0-dev</a> on Fri Apr 12 2013 12:38:54 GMT+0200 (CEST)
</footer>
<script> prettyPrint(); </script>
</body>
</html>