313 lines
8.3 KiB
JavaScript
313 lines
8.3 KiB
JavaScript
// OpenPGP.js - An OpenPGP implementation in javascript
|
|
// Copyright (C) 2018 ProtonTech AG
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3.0 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
/**
|
|
* @fileoverview This module implements AES-OCB en/decryption.
|
|
* @requires crypto/cipher
|
|
* @requires util
|
|
* @module crypto/ocb
|
|
*/
|
|
|
|
import ciphers from './cipher';
|
|
import util from '../util';
|
|
|
|
|
|
const blockLength = 16;
|
|
const ivLength = 15;
|
|
|
|
// https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.2:
|
|
// While OCB [RFC7253] allows the authentication tag length to be of any
|
|
// number up to 128 bits long, this document requires a fixed
|
|
// authentication tag length of 128 bits (16 octets) for simplicity.
|
|
const tagLength = 16;
|
|
|
|
|
|
const { shiftLeft, shiftRight } = util;
|
|
|
|
|
|
function zeros(bytes) {
|
|
return new Uint8Array(bytes);
|
|
}
|
|
|
|
function ntz(n) {
|
|
let ntz = 0;
|
|
for(let i = 1; (n & i) === 0; i <<= 1) {
|
|
ntz++;
|
|
}
|
|
return ntz;
|
|
}
|
|
|
|
function set_xor(S, T) {
|
|
for (let i = 0; i < S.length; i++) {
|
|
S[i] ^= T[i];
|
|
}
|
|
return S;
|
|
}
|
|
|
|
function xor(S, T) {
|
|
return set_xor(S.slice(), T);
|
|
}
|
|
|
|
function concat(...arrays) {
|
|
return util.concatUint8Array(arrays);
|
|
}
|
|
|
|
function double(S) {
|
|
const double = S.slice();
|
|
shiftLeft(double, 1);
|
|
if (S[0] & 0b10000000) {
|
|
double[15] ^= 0b10000111;
|
|
}
|
|
return double;
|
|
}
|
|
|
|
|
|
function constructKeyVariables(cipher, key, text, adata) {
|
|
const aes = new ciphers[cipher](key);
|
|
const encipher = aes.encrypt.bind(aes);
|
|
const decipher = aes.decrypt.bind(aes);
|
|
|
|
const L_x = encipher(zeros(16));
|
|
const L_$ = double(L_x);
|
|
const L = [];
|
|
L[0] = double(L_$);
|
|
|
|
const max_ntz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1;
|
|
for (let i = 1; i <= max_ntz; i++) {
|
|
L[i] = double(L[i - 1]);
|
|
}
|
|
|
|
L.x = L_x;
|
|
L.$ = L_$;
|
|
|
|
return { encipher, decipher, L };
|
|
}
|
|
|
|
function hash(kv, key, adata) {
|
|
if (!adata.length) {
|
|
// Fast path
|
|
return zeros(16);
|
|
}
|
|
|
|
const { encipher, L } = kv;
|
|
|
|
//
|
|
// Consider A as a sequence of 128-bit blocks
|
|
//
|
|
const m = adata.length >> 4;
|
|
|
|
const offset = zeros(16);
|
|
const sum = zeros(16);
|
|
for (let i = 0; i < m; i++) {
|
|
set_xor(offset, L[ntz(i + 1)]);
|
|
set_xor(sum, encipher(xor(offset, adata)));
|
|
adata = adata.subarray(16);
|
|
}
|
|
|
|
//
|
|
// Process any final partial block; compute final hash value
|
|
//
|
|
if (adata.length) {
|
|
set_xor(offset, L.x);
|
|
|
|
const cipherInput = zeros(16);
|
|
cipherInput.set(adata, 0);
|
|
cipherInput[adata.length] = 0b10000000;
|
|
set_xor(cipherInput, offset);
|
|
|
|
set_xor(sum, encipher(cipherInput));
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
|
|
/**
|
|
* Encrypt plaintext input.
|
|
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
|
|
* @param {Uint8Array} plaintext The cleartext input to be encrypted
|
|
* @param {Uint8Array} key The encryption key
|
|
* @param {Uint8Array} nonce The nonce (15 bytes)
|
|
* @param {Uint8Array} adata Associated data to sign
|
|
* @returns {Promise<Uint8Array>} The ciphertext output
|
|
*/
|
|
async function encrypt(cipher, plaintext, key, nonce, adata) {
|
|
//
|
|
// Consider P as a sequence of 128-bit blocks
|
|
//
|
|
const m = plaintext.length >> 4;
|
|
|
|
//
|
|
// Key-dependent variables
|
|
//
|
|
const kv = constructKeyVariables(cipher, key, plaintext, adata);
|
|
const { encipher, L } = kv;
|
|
|
|
//
|
|
// Nonce-dependent and per-encryption variables
|
|
//
|
|
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
|
|
const Nonce = concat(zeros(15 - nonce.length), new Uint8Array([1]), nonce);
|
|
const bottom = Nonce[15] & 0b111111;
|
|
Nonce[15] &= 0b11000000;
|
|
const Ktop = encipher(Nonce);
|
|
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
|
|
// Offset_0 = Stretch[1+bottom..128+bottom]
|
|
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
|
|
const checksum = zeros(16);
|
|
|
|
const C = new Uint8Array(plaintext.length + tagLength);
|
|
|
|
//
|
|
// Process any whole blocks
|
|
//
|
|
let i;
|
|
let pos = 0;
|
|
for (i = 0; i < m; i++) {
|
|
set_xor(offset, L[ntz(i + 1)]);
|
|
C.set(xor(offset, encipher(xor(offset, plaintext))), pos);
|
|
set_xor(checksum, plaintext);
|
|
|
|
plaintext = plaintext.subarray(16);
|
|
pos += 16;
|
|
}
|
|
|
|
//
|
|
// Process any final partial block and compute raw tag
|
|
//
|
|
if (plaintext.length) {
|
|
set_xor(offset, L.x);
|
|
const Pad = encipher(offset);
|
|
C.set(xor(plaintext, Pad), pos);
|
|
|
|
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
|
|
const xorInput = zeros(16);
|
|
xorInput.set(plaintext, 0);
|
|
xorInput[plaintext.length] = 0b10000000;
|
|
set_xor(checksum, xorInput);
|
|
pos += plaintext.length;
|
|
}
|
|
const Tag = xor(encipher(xor(xor(checksum, offset), L.$)), hash(kv, key, adata));
|
|
|
|
//
|
|
// Assemble ciphertext
|
|
//
|
|
C.set(Tag, pos);
|
|
return C;
|
|
}
|
|
|
|
|
|
/**
|
|
* Decrypt ciphertext input.
|
|
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
|
|
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
|
|
* @param {Uint8Array} key The encryption key
|
|
* @param {Uint8Array} nonce The nonce (15 bytes)
|
|
* @param {Uint8Array} adata Associated data to verify
|
|
* @returns {Promise<Uint8Array>} The plaintext output
|
|
*/
|
|
async function decrypt(cipher, ciphertext, key, nonce, adata) {
|
|
//
|
|
// Consider C as a sequence of 128-bit blocks
|
|
//
|
|
const T = ciphertext.subarray(ciphertext.length - tagLength);
|
|
ciphertext = ciphertext.subarray(0, ciphertext.length - tagLength);
|
|
const m = ciphertext.length >> 4;
|
|
|
|
//
|
|
// Key-dependent variables
|
|
//
|
|
const kv = constructKeyVariables(cipher, key, ciphertext, adata);
|
|
const { encipher, decipher, L } = kv;
|
|
|
|
//
|
|
// Nonce-dependent and per-encryption variables
|
|
//
|
|
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
|
|
const Nonce = concat(zeros(15 - nonce.length), new Uint8Array([1]), nonce);
|
|
const bottom = Nonce[15] & 0b111111;
|
|
Nonce[15] &= 0b11000000;
|
|
const Ktop = encipher(Nonce);
|
|
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
|
|
// Offset_0 = Stretch[1+bottom..128+bottom]
|
|
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
|
|
const checksum = zeros(16);
|
|
|
|
const P = new Uint8Array(ciphertext.length);
|
|
|
|
//
|
|
// Process any whole blocks
|
|
//
|
|
let i;
|
|
let pos = 0;
|
|
for (i = 0; i < m; i++) {
|
|
set_xor(offset, L[ntz(i + 1)]);
|
|
P.set(xor(offset, decipher(xor(offset, ciphertext))), pos);
|
|
set_xor(checksum, P.subarray(pos));
|
|
|
|
ciphertext = ciphertext.subarray(16);
|
|
pos += 16;
|
|
}
|
|
|
|
//
|
|
// Process any final partial block and compute raw tag
|
|
//
|
|
if (ciphertext.length) {
|
|
set_xor(offset, L.x);
|
|
const Pad = encipher(offset);
|
|
P.set(xor(ciphertext, Pad), pos);
|
|
|
|
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
|
|
const xorInput = zeros(16);
|
|
xorInput.set(P.subarray(pos), 0);
|
|
xorInput[ciphertext.length] = 0b10000000;
|
|
set_xor(checksum, xorInput);
|
|
pos += ciphertext.length;
|
|
}
|
|
const Tag = xor(encipher(xor(xor(checksum, offset), L.$)), hash(kv, key, adata));
|
|
|
|
//
|
|
// Check for validity and assemble plaintext
|
|
//
|
|
if (!util.equalsUint8Array(Tag, T)) {
|
|
throw new Error('Authentication tag mismatch in OCB ciphertext');
|
|
}
|
|
return P;
|
|
}
|
|
|
|
/**
|
|
* Get OCB nonce as defined by {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.2|RFC4880bis-04, section 5.16.2}.
|
|
* @param {Uint8Array} iv The initialization vector (15 bytes)
|
|
* @param {Uint8Array} chunkIndex The chunk index (8 bytes)
|
|
*/
|
|
function getNonce(iv, chunkIndex) {
|
|
const nonce = iv.slice();
|
|
for (let i = 0; i < chunkIndex.length; i++) {
|
|
nonce[7 + i] ^= chunkIndex[i];
|
|
}
|
|
return nonce;
|
|
}
|
|
|
|
|
|
export default {
|
|
blockLength,
|
|
ivLength,
|
|
encrypt,
|
|
decrypt,
|
|
getNonce
|
|
};
|