fork-openpgpjs/src/crypto/ocb.js
2018-04-27 14:06:20 +02:00

308 lines
9.0 KiB
JavaScript

// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2018 ProtonTech AG
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview This module implements AES-OCB en/decryption.
* @requires crypto/cipher
* @requires util
* @module crypto/ocb
*/
import ciphers from './cipher';
import util from '../util';
const blockLength = 16;
const ivLength = 15;
// https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.2:
// While OCB [RFC7253] allows the authentication tag length to be of any
// number up to 128 bits long, this document requires a fixed
// authentication tag length of 128 bits (16 octets) for simplicity.
const tagLength = 16;
function ntz(n) {
let ntz = 0;
for(let i = 1; (n & i) === 0; i <<= 1) {
ntz++;
}
return ntz;
}
function xorMut(S, T) {
for (let i = 0; i < S.length; i++) {
S[i] ^= T[i];
}
return S;
}
function xor(S, T) {
return xorMut(S.slice(), T);
}
const zeroBlock = new Uint8Array(blockLength);
const one = new Uint8Array([1]);
/**
* Class to en/decrypt using OCB mode.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} key The encryption key
*/
async function OCB(cipher, key) {
let maxNtz = 0;
let kv;
constructKeyVariables(cipher, key);
function constructKeyVariables(cipher, key) {
const aes = new ciphers[cipher](key);
const encipher = aes.encrypt.bind(aes);
const decipher = aes.decrypt.bind(aes);
const mask_x = encipher(zeroBlock);
const mask_$ = util.double(mask_x);
const mask = [];
mask[0] = util.double(mask_$);
mask.x = mask_x;
mask.$ = mask_$;
kv = { encipher, decipher, mask };
}
function extendKeyVariables(text, adata) {
const { mask } = kv;
const newMaxNtz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1;
for (let i = maxNtz + 1; i <= newMaxNtz; i++) {
mask[i] = util.double(mask[i - 1]);
}
maxNtz = newMaxNtz;
}
function hash(adata) {
if (!adata.length) {
// Fast path
return zeroBlock;
}
const { encipher, mask } = kv;
//
// Consider A as a sequence of 128-bit blocks
//
const m = adata.length >> 4;
const offset = new Uint8Array(16);
const sum = new Uint8Array(16);
for (let i = 0; i < m; i++) {
xorMut(offset, mask[ntz(i + 1)]);
xorMut(sum, encipher(xor(offset, adata)));
adata = adata.subarray(16);
}
//
// Process any final partial block; compute final hash value
//
if (adata.length) {
xorMut(offset, mask.x);
const cipherInput = new Uint8Array(16);
cipherInput.set(adata, 0);
cipherInput[adata.length] = 0b10000000;
xorMut(cipherInput, offset);
xorMut(sum, encipher(cipherInput));
}
return sum;
}
return {
/**
* Encrypt plaintext input.
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
encrypt: async function(plaintext, nonce, adata) {
//
// Consider P as a sequence of 128-bit blocks
//
const m = plaintext.length >> 4;
//
// Key-dependent variables
//
extendKeyVariables(plaintext, adata);
const { encipher, mask } = kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that tagLength mod 16 == 0.
const paddedNonce = util.concatUint8Array([zeroBlock.subarray(0, 15 - nonce.length), one, nonce]);
const bottom = paddedNonce[15] & 0b111111;
paddedNonce[15] &= 0b11000000;
const kTop = encipher(paddedNonce);
const stretched = util.concatUint8Array([kTop, xor(kTop.subarray(0, 8), kTop.subarray(1, 9))]);
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = util.shiftRight(stretched.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = new Uint8Array(16);
const ct = new Uint8Array(plaintext.length + tagLength);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
xorMut(offset, mask[ntz(i + 1)]);
ct.set(xorMut(encipher(xor(offset, plaintext)), offset), pos);
xorMut(checksum, plaintext);
plaintext = plaintext.subarray(16);
pos += 16;
}
//
// Process any final partial block and compute raw tag
//
if (plaintext.length) {
xorMut(offset, mask.x);
const padding = encipher(offset);
ct.set(xor(plaintext, padding), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || new Uint8Array(127-bitlen(P_*)))
const xorInput = new Uint8Array(16);
xorInput.set(plaintext, 0);
xorInput[plaintext.length] = 0b10000000;
xorMut(checksum, xorInput);
pos += plaintext.length;
}
const tag = xorMut(encipher(xorMut(xorMut(checksum, offset), mask.$)), hash(adata));
//
// Assemble ciphertext
//
ct.set(tag, pos);
return ct;
},
/**
* Decrypt ciphertext input.
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to verify
* @returns {Promise<Uint8Array>} The plaintext output
*/
decrypt: async function(ciphertext, nonce, adata) {
//
// Consider C as a sequence of 128-bit blocks
//
const ctTag = ciphertext.subarray(ciphertext.length - tagLength);
ciphertext = ciphertext.subarray(0, ciphertext.length - tagLength);
const m = ciphertext.length >> 4;
//
// Key-dependent variables
//
extendKeyVariables(ciphertext, adata);
const { encipher, decipher, mask } = kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that tagLength mod 16 == 0.
const paddedNonce = util.concatUint8Array([zeroBlock.subarray(0, 15 - nonce.length), one, nonce]);
const bottom = paddedNonce[15] & 0b111111;
paddedNonce[15] &= 0b11000000;
const kTop = encipher(paddedNonce);
const stretched = util.concatUint8Array([kTop, xor(kTop.subarray(0, 8), kTop.subarray(1, 9))]);
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = util.shiftRight(stretched.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = new Uint8Array(16);
const pt = new Uint8Array(ciphertext.length);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
xorMut(offset, mask[ntz(i + 1)]);
pt.set(xorMut(decipher(xor(offset, ciphertext)), offset), pos);
xorMut(checksum, pt.subarray(pos));
ciphertext = ciphertext.subarray(16);
pos += 16;
}
//
// Process any final partial block and compute raw tag
//
if (ciphertext.length) {
xorMut(offset, mask.x);
const padding = encipher(offset);
pt.set(xor(ciphertext, padding), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || new Uint8Array(127-bitlen(P_*)))
const xorInput = new Uint8Array(16);
xorInput.set(pt.subarray(pos), 0);
xorInput[ciphertext.length] = 0b10000000;
xorMut(checksum, xorInput);
pos += ciphertext.length;
}
const tag = xorMut(encipher(xorMut(xorMut(checksum, offset), mask.$)), hash(adata));
//
// Check for validity and assemble plaintext
//
if (!util.equalsUint8Array(ctTag, tag)) {
throw new Error('Authentication tag mismatch in OCB ciphertext');
}
return pt;
}
};
}
/**
* Get OCB nonce as defined by {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.2|RFC4880bis-04, section 5.16.2}.
* @param {Uint8Array} iv The initialization vector (15 bytes)
* @param {Uint8Array} chunkIndex The chunk index (8 bytes)
*/
OCB.getNonce = function(iv, chunkIndex) {
const nonce = iv.slice();
for (let i = 0; i < chunkIndex.length; i++) {
nonce[7 + i] ^= chunkIndex[i];
}
return nonce;
};
OCB.blockLength = blockLength;
OCB.ivLength = ivLength;
export default OCB;