189 lines
5.7 KiB
JavaScript
189 lines
5.7 KiB
JavaScript
// GPG4Browsers - An OpenPGP implementation in javascript
|
|
// Copyright (C) 2011 Recurity Labs GmbH
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3.0 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
/**
|
|
* @fileoverview A Digital signature algorithm implementation
|
|
* @requires bn.js
|
|
* @requires crypto/random
|
|
* @requires util
|
|
* @module crypto/public_key/dsa
|
|
*/
|
|
|
|
import BN from 'bn.js';
|
|
import random from '../random';
|
|
import util from '../../util';
|
|
import prime from './prime';
|
|
|
|
const one = new BN(1);
|
|
const zero = new BN(0);
|
|
|
|
/*
|
|
TODO regarding the hash function, read:
|
|
https://tools.ietf.org/html/rfc4880#section-13.6
|
|
https://tools.ietf.org/html/rfc4880#section-14
|
|
*/
|
|
|
|
export default {
|
|
/**
|
|
* DSA Sign function
|
|
* @param {Integer} hash_algo
|
|
* @param {Uint8Array} hashed
|
|
* @param {BN} g
|
|
* @param {BN} p
|
|
* @param {BN} q
|
|
* @param {BN} x
|
|
* @returns {{ r: BN, s: BN }}
|
|
* @async
|
|
*/
|
|
sign: async function(hash_algo, hashed, g, p, q, x) {
|
|
let k;
|
|
let r;
|
|
let s;
|
|
let t;
|
|
const redp = new BN.red(p);
|
|
const redq = new BN.red(q);
|
|
const gred = g.toRed(redp);
|
|
const xred = x.toRed(redq);
|
|
// If the output size of the chosen hash is larger than the number of
|
|
// bits of q, the hash result is truncated to fit by taking the number
|
|
// of leftmost bits equal to the number of bits of q. This (possibly
|
|
// truncated) hash function result is treated as a number and used
|
|
// directly in the DSA signature algorithm.
|
|
const h = new BN(hashed.subarray(0, q.byteLength())).toRed(redq);
|
|
// FIPS-186-4, section 4.6:
|
|
// The values of r and s shall be checked to determine if r = 0 or s = 0.
|
|
// If either r = 0 or s = 0, a new value of k shall be generated, and the
|
|
// signature shall be recalculated. It is extremely unlikely that r = 0
|
|
// or s = 0 if signatures are generated properly.
|
|
while (true) {
|
|
// See Appendix B here: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
|
|
k = await random.getRandomBN(one, q); // returns in [1, q-1]
|
|
r = gred.redPow(k).fromRed().toRed(redq); // (g**k mod p) mod q
|
|
if (zero.cmp(r) === 0) {
|
|
continue;
|
|
}
|
|
t = h.redAdd(xred.redMul(r)); // H(m) + x*r mod q
|
|
s = k.toRed(redq).redInvm().redMul(t); // k**-1 * (H(m) + x*r) mod q
|
|
if (zero.cmp(s) === 0) {
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
return {
|
|
r: r.toArrayLike(Uint8Array, 'be', q.byteLength()),
|
|
s: s.toArrayLike(Uint8Array, 'be', q.byteLength())
|
|
};
|
|
},
|
|
|
|
/**
|
|
* DSA Verify function
|
|
* @param {Integer} hash_algo
|
|
* @param {BN} r
|
|
* @param {BN} s
|
|
* @param {Uint8Array} hashed
|
|
* @param {BN} g
|
|
* @param {BN} p
|
|
* @param {BN} q
|
|
* @param {BN} y
|
|
* @returns {boolean}
|
|
* @async
|
|
*/
|
|
verify: async function(hash_algo, r, s, hashed, g, p, q, y) {
|
|
if (zero.ucmp(r) >= 0 || r.ucmp(q) >= 0 ||
|
|
zero.ucmp(s) >= 0 || s.ucmp(q) >= 0) {
|
|
util.printDebug("invalid DSA Signature");
|
|
return null;
|
|
}
|
|
const redp = new BN.red(p);
|
|
const redq = new BN.red(q);
|
|
const h = new BN(hashed.subarray(0, q.byteLength()));
|
|
const w = s.toRed(redq).redInvm(); // s**-1 mod q
|
|
if (zero.cmp(w) === 0) {
|
|
util.printDebug("invalid DSA Signature");
|
|
return null;
|
|
}
|
|
const u1 = h.toRed(redq).redMul(w); // H(m) * w mod q
|
|
const u2 = r.toRed(redq).redMul(w); // r * w mod q
|
|
const t1 = g.toRed(redp).redPow(u1.fromRed()); // g**u1 mod p
|
|
const t2 = y.toRed(redp).redPow(u2.fromRed()); // y**u2 mod p
|
|
const v = t1.redMul(t2).fromRed().mod(q); // (g**u1 * y**u2 mod p) mod q
|
|
return v.cmp(r) === 0;
|
|
},
|
|
|
|
/**
|
|
* Validate DSA parameters
|
|
* @param {Uint8Array} p DSA prime
|
|
* @param {Uint8Array} q DSA group order
|
|
* @param {Uint8Array} g DSA sub-group generator
|
|
* @param {Uint8Array} y DSA public key
|
|
* @param {Uint8Array} x DSA private key
|
|
* @returns {Promise<Boolean>} whether params are valid
|
|
* @async
|
|
*/
|
|
validateParams: async function (p, q, g, y, x) {
|
|
p = new BN(p);
|
|
q = new BN(q);
|
|
g = new BN(g);
|
|
y = new BN(y);
|
|
const one = new BN(1);
|
|
// Check that 1 < g < p
|
|
if (g.lte(one) || g.gte(p)) {
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Check that subgroup order q divides p-1
|
|
*/
|
|
if (!p.sub(one).mod(q).isZero()) {
|
|
return false;
|
|
}
|
|
|
|
const pred = new BN.red(p);
|
|
const gModP = g.toRed(pred);
|
|
/**
|
|
* g has order q
|
|
* Check that g ** q = 1 mod p
|
|
*/
|
|
if (!gModP.redPow(q).eq(one)) {
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Check q is large and probably prime (we mainly want to avoid small factors)
|
|
*/
|
|
const qSize = q.bitLength();
|
|
if (qSize < 150 || !(await prime.isProbablePrime(q, null, 32))) {
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Re-derive public key y' = g ** x mod p
|
|
* Expect y == y'
|
|
*
|
|
* Blinded exponentiation computes g**{rq + x} to compare to y
|
|
*/
|
|
x = new BN(x);
|
|
const r = await random.getRandomBN(new BN(2).shln(qSize - 1), new BN(2).shln(qSize)); // draw r of same size as q
|
|
const rqx = q.mul(r).add(x);
|
|
if (!y.eq(gModP.redPow(rqx))) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|