// // Author: Wolfgang Spraul // // This is free and unencumbered software released into the public domain. // For details see the UNLICENSE file at the root of the source tree. // #include "model.h" #include "bit.h" #include "parts.h" #include "control.h" #define HCLK_BYTES 2 static uint8_t* get_first_minor(struct fpga_bits* bits, int row, int major) { int i, num_frames; num_frames = 0; for (i = 0; i < major; i++) num_frames += get_major_minors(XC6SLX9, i); return &bits->d[(row*FRAMES_PER_ROW + num_frames)*FRAME_SIZE]; } static int get_bit(struct fpga_bits* bits, int row, int major, int minor, int bit_i) { return frame_get_bit(get_first_minor(bits, row, major) + minor*FRAME_SIZE, bit_i); } static void set_bit(struct fpga_bits* bits, int row, int major, int minor, int bit_i) { return frame_set_bit(get_first_minor(bits, row, major) + minor*FRAME_SIZE, bit_i); } static void clear_bit(struct fpga_bits* bits, int row, int major, int minor, int bit_i) { return frame_clear_bit(get_first_minor(bits, row, major) + minor*FRAME_SIZE, bit_i); } struct bit_pos { int row; int major; int minor; int bit_i; }; static int get_bitp(struct fpga_bits* bits, struct bit_pos* pos) { return get_bit(bits, pos->row, pos->major, pos->minor, pos->bit_i); } static void set_bitp(struct fpga_bits* bits, struct bit_pos* pos) { set_bit(bits, pos->row, pos->major, pos->minor, pos->bit_i); } static void clear_bitp(struct fpga_bits* bits, struct bit_pos* pos) { clear_bit(bits, pos->row, pos->major, pos->minor, pos->bit_i); } static struct bit_pos s_default_bits[] = { { 0, 0, 3, 66 }, { 0, 1, 23, 1034 }, { 0, 1, 23, 1035 }, { 0, 1, 23, 1039 }, { 2, 0, 3, 66 }}; // sw_bitpos is relative to a tile, i.e. major (x) and // row/v64_i (y) are defined outside. struct sw_bitpos { // minors 0-19 are minor pairs, minor will be set // to the even beginning of the pair, two_bits_o and // one_bit_o are within 2*64 bits of the two minors. // Even bit offsets are from the first minor, odd bit // offsets from the second minor. // minor 20 is a regular single 64-bit minor. int minor; // 0,2,4,..18 for pairs, 20 for single-minor int two_bits_o; // 0-126 for pairs (even only), 0-62 for single-minor int two_bits_val; // 0-3 int one_bit_o; // 1-6 positions up or down from two-bit pos swidx_t uni_dir; swidx_t rev_dir; // NO_SWITCH for unidirectional switches }; struct sw_yxpos { int y; int x; swidx_t idx; }; #define MAX_YX_SWITCHES 1024 struct extract_state { struct fpga_model* model; struct fpga_bits* bits; int num_bit_pos; struct sw_bitpos bit_pos[MAX_SWITCHBOX_SIZE]; // yx switches are fully extracted ones pointing into the // model, stored here for later processing into nets. int num_yx_pos; struct sw_yxpos yx_pos[MAX_YX_SWITCHES]; // needs to be dynamically alloced... }; static int extract_iobs(struct fpga_model* model, struct fpga_bits* bits) { int i, num_iobs, iob_y, iob_x, iob_idx, dev_idx, rc; uint32_t* u32_p; const char* iob_sitename; struct fpga_device* dev; num_iobs = get_num_iobs(XC6SLX9); for (i = 0; i < num_iobs; i++) { u32_p = (uint32_t*) &bits->d[IOB_DATA_START + i*IOB_ENTRY_LEN]; if (!u32_p[0] && !u32_p[1]) continue; iob_sitename = get_iob_sitename(XC6SLX9, i); if (!iob_sitename) { HERE(); continue; } rc = fpga_find_iob(model, iob_sitename, &iob_y, &iob_x, &iob_idx); if (rc) FAIL(rc); dev_idx = fpga_dev_idx(model, iob_y, iob_x, DEV_IOB, iob_idx); if (dev_idx == NO_DEV) FAIL(EINVAL); dev = FPGA_DEV(model, iob_y, iob_x, dev_idx); // we only support 2 hardcoded types of IOB right now // todo: bit 7 goes on when out-net connected? if ((u32_p[0] & 0xFFFFFF7F) == 0x00000100 && u32_p[1] == 0x06001100) { dev->instantiated = 1; strcpy(dev->u.iob.ostandard, IO_LVCMOS33); dev->u.iob.drive_strength = 12; dev->u.iob.O_used = 1; dev->u.iob.slew = SLEW_SLOW; dev->u.iob.suspend = SUSP_3STATE; u32_p[0] = 0; u32_p[1] = 0; } else if (u32_p[0] == 0x00000107 && u32_p[1] == 0x0B002400) { dev->instantiated = 1; strcpy(dev->u.iob.istandard, IO_LVCMOS33); dev->u.iob.bypass_mux = BYPASS_MUX_I; dev->u.iob.I_mux = IMUX_I; u32_p[0] = 0; u32_p[1] = 0; } else HERE(); } return 0; fail: return rc; } static int extract_logic(struct fpga_model* model, struct fpga_bits* bits) { int dev_idx, row, row_pos, rc; int x, y, byte_off; uint8_t* u8_p; uint64_t u64; const char* lut_str; for (x = LEFT_SIDE_WIDTH; x < model->x_width-RIGHT_SIDE_WIDTH; x++) { if (!is_atx(X_FABRIC_LOGIC_COL|X_CENTER_LOGIC_COL, model, x)) continue; for (y = TOP_IO_TILES; y < model->y_height - BOT_IO_TILES; y++) { if (!has_device_type(model, y, x, DEV_LOGIC, LOGIC_M)) continue; row = which_row(y, model); row_pos = pos_in_row(y, model); if (row == -1 || row_pos == -1 || row_pos == 8) { HERE(); continue; } if (row_pos > 8) row_pos--; u8_p = get_first_minor(bits, row, model->x_major[x]); byte_off = row_pos * 8; if (row_pos >= 8) byte_off += HCLK_BYTES; // M device dev_idx = fpga_dev_idx(model, y, x, DEV_LOGIC, DEV_LOGM); if (dev_idx == NO_DEV) FAIL(EINVAL); // A6_LUT if (frame_get_u32(u8_p + 24*FRAME_SIZE + byte_off + 4) || frame_get_u32(u8_p + 25*FRAME_SIZE + byte_off + 4)) { u64 = read_lut64(u8_p + 24*FRAME_SIZE, (byte_off+4)*8); { int logic_base[6] = {0,1,0,0,1,0}; lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); } if (*lut_str) { rc = fdev_logic_set_lut(model, y, x, DEV_LOGM, LUT_A, 6, lut_str, ZTERM); if (rc) FAIL(rc); *(uint32_t*)(u8_p+24*FRAME_SIZE+byte_off+4) = 0; *(uint32_t*)(u8_p+25*FRAME_SIZE+byte_off+4) = 0; } } // B6_LUT if (frame_get_u32(u8_p + 21*FRAME_SIZE + byte_off + 4) || frame_get_u32(u8_p + 22*FRAME_SIZE + byte_off + 4)) { u64 = read_lut64(u8_p + 21*FRAME_SIZE, (byte_off+4)*8); { int logic_base[6] = {1,1,0,1,0,1}; lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); } if (*lut_str) { rc = fdev_logic_set_lut(model, y, x, DEV_LOGM, LUT_B, 6, lut_str, ZTERM); if (rc) FAIL(rc); *(uint32_t*)(u8_p+21*FRAME_SIZE+byte_off+4) = 0; *(uint32_t*)(u8_p+22*FRAME_SIZE+byte_off+4) = 0; } } // C6_LUT if (frame_get_u32(u8_p + 24*FRAME_SIZE + byte_off) || frame_get_u32(u8_p + 25*FRAME_SIZE + byte_off)) { u64 = read_lut64(u8_p + 24*FRAME_SIZE, byte_off*8); { int logic_base[6] = {0,1,0,0,1,0}; lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); } if (*lut_str) { rc = fdev_logic_set_lut(model, y, x, DEV_LOGM, LUT_C, 6, lut_str, ZTERM); if (rc) FAIL(rc); *(uint32_t*)(u8_p+24*FRAME_SIZE+byte_off) = 0; *(uint32_t*)(u8_p+25*FRAME_SIZE+byte_off) = 0; } } // D6_LUT if (frame_get_u32(u8_p + 21*FRAME_SIZE + byte_off) || frame_get_u32(u8_p + 22*FRAME_SIZE + byte_off)) { u64 = read_lut64(u8_p + 21*FRAME_SIZE, byte_off*8); { int logic_base[6] = {1,1,0,1,0,1}; lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); } if (*lut_str) { rc = fdev_logic_set_lut(model, y, x, DEV_LOGM, LUT_D, 6, lut_str, ZTERM); if (rc) FAIL(rc); *(uint32_t*)(u8_p+21*FRAME_SIZE+byte_off) = 0; *(uint32_t*)(u8_p+22*FRAME_SIZE+byte_off) = 0; } } // X device u64 = frame_get_u64(u8_p + 26*FRAME_SIZE + byte_off); if ( u64 ) { // 21, 22, 36 and 37 are actually not default // and can go off with the FFMUXes or routing // say D over the FF to DQ etc. (AFFMUX=b37, // BFFMUX=b36, CFFMUX=b22, DFFMUX=b21). if (!(u64 & (1ULL<<1) && u64 & (1ULL<<2) && u64 & (1ULL<<7) && u64 & (1ULL<<21) && u64 & (1ULL<<22) && u64 & (1ULL<<36) && u64 & (1ULL<<37) && u64 & (1ULL<<39))) { HERE(); continue; } if (u64 & ~(0x000000B000600086ULL)) { HERE(); continue; } dev_idx = fpga_dev_idx(model, y, x, DEV_LOGIC, DEV_LOGX); if (dev_idx == NO_DEV) FAIL(EINVAL); *(uint64_t*)(u8_p+26*FRAME_SIZE+byte_off) = 0; // A6_LUT u64 = read_lut64(u8_p + 27*FRAME_SIZE, (byte_off+4)*8); { int logic_base[6] = {1,1,0,1,1,0}; lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); } if (*lut_str) { rc = fdev_logic_set_lut(model, y, x, DEV_LOGX, LUT_A, 6, lut_str, ZTERM); if (rc) FAIL(rc); *(uint32_t*)(u8_p+27*FRAME_SIZE+byte_off+4) = 0; *(uint32_t*)(u8_p+28*FRAME_SIZE+byte_off+4) = 0; } // B6_LUT u64 = read_lut64(u8_p + 29*FRAME_SIZE, (byte_off+4)*8); { int logic_base[6] = {1,1,0,1,1,0}; lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); } if (*lut_str) { rc = fdev_logic_set_lut(model, y, x, DEV_LOGX, LUT_B, 6, lut_str, ZTERM); *(uint32_t*)(u8_p+29*FRAME_SIZE+byte_off+4) = 0; *(uint32_t*)(u8_p+30*FRAME_SIZE+byte_off+4) = 0; } // C6_LUT u64 = read_lut64(u8_p + 27*FRAME_SIZE, byte_off*8); { int logic_base[6] = {0,1,0,0,0,1}; lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); } if (*lut_str) { rc = fdev_logic_set_lut(model, y, x, DEV_LOGX, LUT_C, 6, lut_str, ZTERM); *(uint32_t*)(u8_p+27*FRAME_SIZE+byte_off) = 0; *(uint32_t*)(u8_p+28*FRAME_SIZE+byte_off) = 0; } // D6_LUT u64 = read_lut64(u8_p + 29*FRAME_SIZE, byte_off*8); { int logic_base[6] = {0,1,0,0,0,1}; lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); } if (*lut_str) { rc = fdev_logic_set_lut(model, y, x, DEV_LOGX, LUT_D, 6, lut_str, ZTERM); *(uint32_t*)(u8_p+29*FRAME_SIZE+byte_off) = 0; *(uint32_t*)(u8_p+30*FRAME_SIZE+byte_off) = 0; } } } } return 0; fail: return rc; } static int bitpos_is_set(struct extract_state* es, int y, int x, struct sw_bitpos* swpos, int* is_set) { int row_num, row_pos, start_in_frame, two_bits_val, rc; // TODO: does not support minor20 correctly *is_set = 0; is_in_row(es->model, y, &row_num, &row_pos); if (row_num == -1 || row_pos == -1 || row_pos == HCLK_POS) FAIL(EINVAL); if (row_pos > HCLK_POS) start_in_frame = (row_pos-1)*64 + 16; else start_in_frame = row_pos*64; two_bits_val = (get_bit(es->bits, row_num, es->model->x_major[x], swpos->minor, start_in_frame + swpos->two_bits_o/2) << 1) | (get_bit(es->bits, row_num, es->model->x_major[x], swpos->minor+1, start_in_frame + swpos->two_bits_o/2) << 2); if (two_bits_val != swpos->two_bits_val) return 0; if (!get_bit(es->bits, row_num, es->model->x_major[x], swpos->minor + (swpos->one_bit_o&1), start_in_frame + swpos->one_bit_o/2)) return 0; *is_set = 1; return 0; fail: return rc; } static int bitpos_clear_bits(struct extract_state* es, int y, int x, struct sw_bitpos* swpos) { int row_num, row_pos, start_in_frame, rc; // TODO: does not support minor20 correctly is_in_row(es->model, y, &row_num, &row_pos); if (row_num == -1 || row_pos == -1 || row_pos == HCLK_POS) FAIL(EINVAL); if (row_pos > HCLK_POS) start_in_frame = (row_pos-1)*64 + 16; else start_in_frame = row_pos*64; clear_bit(es->bits, row_num, es->model->x_major[x], swpos->minor, start_in_frame + swpos->two_bits_o/2); clear_bit(es->bits, row_num, es->model->x_major[x], swpos->minor+ 1, start_in_frame + swpos->two_bits_o/2); clear_bit(es->bits, row_num, es->model->x_major[x], swpos->minor + (swpos->one_bit_o&1), start_in_frame + swpos->one_bit_o/2); return 0; fail: return rc; } static int extract_routing_switches(struct extract_state* es, int y, int x) { struct fpga_tile* tile; int i, is_set, rc; tile = YX_TILE(es->model, y, x); if (y != 68 || x != 12) return 0; for (i = 0; i < es->num_bit_pos; i++) { rc = bitpos_is_set(es, y, x, &es->bit_pos[i], &is_set); if (rc) FAIL(rc); if (!is_set) continue; if (tile->switches[es->bit_pos[i].uni_dir] & SWITCH_BIDIRECTIONAL) HERE(); if (tile->switches[es->bit_pos[i].uni_dir] & SWITCH_USED) HERE(); if (es->num_yx_pos >= MAX_YX_SWITCHES) { FAIL(ENOTSUP); } es->yx_pos[es->num_yx_pos].y = y; es->yx_pos[es->num_yx_pos].x = x; es->yx_pos[es->num_yx_pos].idx = es->bit_pos[i].uni_dir; es->num_yx_pos++; rc = bitpos_clear_bits(es, y, x, &es->bit_pos[i]); if (rc) FAIL(rc); } return 0; fail: return rc; } static int extract_switches(struct extract_state* es) { int x, y, rc; // go through all tiles, look for one with switches // go through each switch, lookup device, is_enabled() -> enable for (x = 0; x < es->model->x_width; x++) { for (y = 0; y < es->model->y_height; y++) { if (is_atx(X_ROUTING_COL, es->model, x) && y >= TOP_IO_TILES && y < es->model->y_height-BOT_IO_TILES && !is_aty(Y_ROW_HORIZ_AXSYMM|Y_CHIP_HORIZ_REGS, es->model, y)) { rc = extract_routing_switches(es, y, x); if (rc) FAIL(rc); } #if 0 // when all switches are supported, we can turn this // on to make the model more robust if (tile->num_switches) fprintf(stderr, "%i unsupported switches in y%02i x%02i\n", tile->num_switches, y, x); #endif } } return 0; fail: return rc; } #define LOGIN_ROW 2 #define LOGIN_MIP_ROWS 8 static const int logicin_matrix[] = { /*mip 12*/ /* 000 */ LW + (LI_C6|LD1), LW + LI_D6, /* 016 */ LW + (LI_B1|LD1), LW + (LI_DI|LD1), /* 032 */ LW + (LI_C5|LD1), LW + LI_D5, /* 048 */ LW + (LI_CI|LD1), LW + LI_A2, /* 064 */ LW + (LI_C4|LD1), LW + LI_D4, /* 080 */ LW + LI_A1, LW + LI_CE, /* 096 */ LW + (LI_C3|LD1), LW + LI_D3, /* 112 */ LW + (LI_B2|LD1), LW + (LI_WE|LD1), /*mip 14*/ /* 000 */ LW + LI_C1, LW + LI_DX, /* 016 */ LW + (LI_A3|LD1), LW + LI_B3, /* 032 */ LW + (LI_CX|LD1), LW + (LI_D2|LD1), /* 048 */ LW + (LI_A4|LD1), LW + LI_B4, /* 064 */ LW + (LI_D1|LD1), LW + LI_BX, /* 080 */ LW + (LI_A5|LD1), LW + LI_B5, /* 096 */ LW + (LI_AX|LD1), LW + LI_C2, /* 112 */ LW + (LI_A6|LD1), LW + LI_B6, /*mip 16*/ /* 000 */ LW + (LI_B3|LD1), LW + LI_A3, /* 016 */ LW + (LI_C2|LD1), LW + (LI_DX|LD1), /* 032 */ LW + (LI_B4|LD1), LW + LI_A4, /* 048 */ LW + LI_CX, LW + LI_D1, /* 064 */ LW + (LI_B5|LD1), LW + LI_A5, /* 080 */ LW + (LI_BX|LD1), LW + LI_D2, /* 096 */ LW + (LI_B6|LD1), LW + LI_A6, /* 112 */ LW + (LI_C1|LD1), LW + LI_AX, /*mip 18*/ /* 000 */ LW + LI_B2, FAN_B, /* 016 */ LW + (LI_D6|LD1), LW + LI_C6, /* 032 */ LW + (LI_A1|LD1), LW + (LI_CE|LD1), /* 048 */ LW + (LI_D5|LD1), LW + LI_C5, /* 064 */ LW + (LI_A2|LD1), LW + (LI_BI|LD1), /* 080 */ LW + (LI_D4|LD1), LW + LI_C4, /* 096 */ LW + (LI_AI|LD1), LW + LI_B1, /* 112 */ LW + (LI_D3|LD1), LW + LI_C3 }; struct sw_mip_src { int minor; int m0_sw_to; int m0_two_bits_o; int m0_two_bits_val; int m0_one_bit_start; int m1_sw_to; int m1_two_bits_o; int m1_two_bits_val; int m1_one_bit_start; int src_wire[6]; }; struct sw_mi20_src { int sw_to; int two_bits_o; int two_bits_val; int one_bit_start; int src_wire[6]; }; static int add_bitpos(struct extract_state* es, int minor, int sw_to, int two_bits_o, int two_bits_val, int one_bit_o, int sw_from) { // the first member of bidir switch pairs is where the bits reside static const int bidir[] = { LW + (LI_BX|LD1), FAN_B, LW + (LI_AX|LD1), GFAN0, LW + LI_AX, GFAN0, LW + (LI_CE|LD1), GFAN1, LW + (LI_CI|LD1), GFAN1, LW + LI_BX, LW + (LI_CI|LD1), LW + LI_BX, LW + (LI_DI|LD1), LW + (LI_AX|LD1), LW + (LI_CI|LD1), LW + (LI_BX|LD1), LW + (LI_CE|LD1), LW + LI_AX, LW + (LI_CE|LD1) }; int i, rc; // bidirectional switches are ignored on one side, and // marked as bidir on the other side for (i = 0; i < sizeof(bidir)/sizeof(*bidir)/2; i++) { if (sw_from == bidir[i*2] && sw_to == bidir[i*2+1]) // nothing to do where no bits reside return 0; } es->bit_pos[es->num_bit_pos].minor = minor, es->bit_pos[es->num_bit_pos].two_bits_o = two_bits_o; es->bit_pos[es->num_bit_pos].two_bits_val = two_bits_val; es->bit_pos[es->num_bit_pos].one_bit_o = one_bit_o; es->bit_pos[es->num_bit_pos].uni_dir = fpga_switch_lookup(es->model, es->model->first_routing_y, es->model->first_routing_x, fpga_wirestr_i(es->model, sw_from), fpga_wirestr_i(es->model, sw_to)); if (es->bit_pos[es->num_bit_pos].uni_dir == NO_SWITCH) { fprintf(stderr, "#E routing switch %s -> %s not in model\n", fpga_wirestr(es->model, sw_from), fpga_wirestr(es->model, sw_to)); FAIL(EINVAL); } es->bit_pos[es->num_bit_pos].rev_dir = NO_SWITCH; for (i = 0; i < sizeof(bidir)/sizeof(*bidir)/2; i++) { if (sw_from == bidir[i*2+1] && sw_to == bidir[i*2]) { es->bit_pos[es->num_bit_pos].rev_dir = fpga_switch_lookup(es->model, es->model->first_routing_y, es->model->first_routing_x, fpga_wirestr_i(es->model, sw_to), fpga_wirestr_i(es->model, sw_from)); if (es->bit_pos[es->num_bit_pos].rev_dir == NO_SWITCH) { fprintf(stderr, "#E reverse routing switch %s -> %s not in model\n", fpga_wirestr(es->model, sw_to), fpga_wirestr(es->model, sw_from)); FAIL(EINVAL); } break; } } es->num_bit_pos++; return 0; fail: return rc; } static int src_to_bitpos(struct extract_state* es, const struct sw_mip_src* src, int src_len) { int i, j, rc; for (i = 0; i < src_len; i++) { for (j = 0; j < sizeof(src->src_wire)/sizeof(src->src_wire[0]); j++) { if (src[i].src_wire[j] == NO_WIRE) continue; rc = add_bitpos(es, src[i].minor, src[i].m0_sw_to, src[i].m0_two_bits_o, src[i].m0_two_bits_val, src[i].m0_one_bit_start + j*2, src[i].src_wire[j]); if (rc) FAIL(rc); rc = add_bitpos(es, src[i].minor, src[i].m1_sw_to, src[i].m1_two_bits_o, src[i].m1_two_bits_val, src[i].m1_one_bit_start + j*2, src[i].src_wire[j]); if (rc) FAIL(rc); } } return 0; fail: return rc; } static int wire_decrement(int wire) { int _wire, flags; if (wire >= DW && wire <= DW_LAST) { _wire = wire - DW; flags = _wire & DIR_FLAGS; _wire &= ~DIR_FLAGS; if (_wire%4 == 0) return DW + ((_wire + 3) | flags); return DW + ((_wire - 1) | flags); } if (wire >= LW && wire <= LW_LAST) { _wire = wire - LW; flags = _wire & LD1; _wire &= ~LD1; if (_wire == LO_A) return LW + (LO_D|flags); if (_wire == LO_AMUX) return LW + (LO_DMUX|flags); if (_wire == LO_AQ) return LW + (LO_DQ|flags); if ((_wire >= LO_B && _wire <= LO_D) || (_wire >= LO_BMUX && _wire <= LO_DMUX) || (_wire >= LO_BQ && _wire <= LO_DQ)) return LW + ((_wire-1)|flags); } if (wire == NO_WIRE) return wire; HERE(); return wire; } static int mip_to_bitpos(struct extract_state* es, int minor, int m0_two_bits_val, int m0_one_bit_start, int m1_two_bits_val, int m1_one_bit_start, int (*src_wires)[8][6]) { struct sw_mip_src src; int i, j, rc; src.minor = minor; src.m0_two_bits_o = 0; src.m0_two_bits_val = m0_two_bits_val; src.m0_one_bit_start = m0_one_bit_start; src.m1_two_bits_o = 14; src.m1_two_bits_val = m1_two_bits_val; src.m1_one_bit_start = m1_one_bit_start; for (i = 0; i < 8; i++) { int logicin_o = ((src.minor-12)/2)*LOGIN_MIP_ROWS*LOGIN_ROW; logicin_o += i*LOGIN_ROW; src.m0_sw_to = logicin_matrix[logicin_o+0]; src.m1_sw_to = logicin_matrix[logicin_o+1]; if (i) { src.m0_two_bits_o += 16; src.m0_one_bit_start += 16; src.m1_two_bits_o += 16; src.m1_one_bit_start += 16; } for (j = 0; j < sizeof(src.src_wire)/sizeof(src.src_wire[0]); j++) src.src_wire[j] = (*src_wires)[i][j]; rc = src_to_bitpos(es, &src, /*src_len*/ 1); if (rc) FAIL(rc); } return 0; fail: return rc; } static int construct_extract_state(struct extract_state* es, struct fpga_model* model) { int i, j, k, rc; memset(es, 0, sizeof(*es)); es->model = model; if (model->first_routing_y == -1) FAIL(EINVAL); // mip 0-10 (6*288=1728 switches) { struct sw_mip_src src[] = { {0, DW + ((W_WW4*4+3) | DIR_BEG), 0, 2, 3, DW + ((W_NW4*4+3) | DIR_BEG), 14, 1, 2, {LW + (LO_BMUX|LD1), LW + (LO_DQ|LD1), LW + (LO_D|LD1), LW + LO_BMUX, LW + LO_DQ, LW + LO_D}}, {0, DW + ((W_WW4*4+3) | DIR_BEG), 0, 1, 3, DW + ((W_NW4*4+3) | DIR_BEG), 14, 2, 2, {DW + ((W_SW2*4+2)|DIR_N3), DW + ((W_SS2*4+2)|DIR_N3), DW + ((W_WW2*4+2)|DIR_N3), DW + W_NE2*4+3, DW + W_NN2*4+3, DW + W_NW2*4+3}}, {0, DW + ((W_WW4*4+3) | DIR_BEG), 0, 0, 3, DW + ((W_NW4*4+3) | DIR_BEG), 14, 0, 2, {DW + ((W_SW4*4+2)|DIR_N3), DW + ((W_SS4*4+2)|DIR_N3), DW + W_NE4*4+3, DW + W_NN4*4+3, DW + W_NW4*4+3, DW + W_WW4*4+3}}, {0, DW + ((W_SS4*4+3) | DIR_BEG), 16, 2, 18, DW + ((W_SW4*4+3) | DIR_BEG), 30, 1, 19, {DW + W_SW2*4+3, DW + W_WW2*4+3, DW + ((W_NW2*4+0)|DIR_S0), DW + W_SS2*4+3, DW + W_SE2*4+3, DW + W_EE2*4+3}}, {0, DW + ((W_SS4*4+3) | DIR_BEG), 16, 1, 18, DW + ((W_SW4*4+3) | DIR_BEG), 30, 2, 19, {LW + LO_D, LW + LO_DQ, LW + LO_BMUX, LW + (LO_D|LD1), LW + (LO_DQ|LD1), LW + (LO_BMUX|LD1)}}, {0, DW + ((W_SS4*4+3) | DIR_BEG), 16, 0, 18, DW + ((W_SW4*4+3) | DIR_BEG), 30, 0, 19, {DW + W_SW4*4+3, DW + W_SS4*4+3, DW + ((W_WW4*4+0)|DIR_S0), DW + ((W_NW4*4+0)|DIR_S0), DW + W_SE4*4+3, DW + W_EE4*4+3}}, {2, DW + ((W_NN4*4+3) | DIR_BEG), 0, 2, 3, DW + ((W_NE4*4+3) | DIR_BEG), 14, 1, 2, {LW + (LO_BMUX|LD1), LW + (LO_DQ|LD1), LW + (LO_D|LD1), LW + LO_BMUX, LW + LO_DQ, LW + LO_D}}, {2, DW + ((W_NN4*4+3) | DIR_BEG), 0, 1, 3, DW + ((W_NE4*4+3) | DIR_BEG), 14, 2, 2, {DW + W_EE2*4+3, DW + W_SE2*4+3, DW + ((W_WW2*4+2)|DIR_N3), DW + W_NE2*4+3, DW + W_NN2*4+3, DW + W_NW2*4+3}}, {2, DW + ((W_NN4*4+3) | DIR_BEG), 0, 0, 3, DW + ((W_NE4*4+3) | DIR_BEG), 14, 0, 2, {DW + W_EE4*4+3, DW + W_SE4*4+3, DW + W_NE4*4+3, DW + W_NN4*4+3, DW + W_NW4*4+3, DW + W_WW4*4+3}}, {2, DW + ((W_EE4*4+3) | DIR_BEG), 16, 2, 18, DW + ((W_SE4*4+3) | DIR_BEG), 30, 1, 19, {DW + W_SW2*4+3, DW + W_NN2*4+3, DW + W_NE2*4+3, DW + W_SS2*4+3, DW + W_SE2*4+3, DW + W_EE2*4+3}}, {2, DW + ((W_EE4*4+3) | DIR_BEG), 16, 1, 18, DW + ((W_SE4*4+3) | DIR_BEG), 30, 2, 19, {LW + LO_D, LW + LO_DQ, LW + LO_BMUX, LW + (LO_D|LD1), LW + (LO_DQ|LD1), LW + (LO_BMUX|LD1)}}, {2, DW + ((W_EE4*4+3) | DIR_BEG), 16, 0, 18, DW + ((W_SE4*4+3) | DIR_BEG), 30, 0, 19, {DW + W_SW4*4+3, DW + W_SS4*4+3, DW + W_NN4*4+3, DW + W_NE4*4+3, DW + W_SE4*4+3, DW + W_EE4*4+3}}, {4, DW + ((W_NW2*4+3) | DIR_BEG), 0, 2, 3, DW + ((W_NN2*4+3) | DIR_BEG), 14, 1, 2, {LW + (LO_BMUX|LD1), LW + (LO_DQ|LD1), LW + (LO_D|LD1), LW + LO_BMUX, LW + LO_DQ, LW + LO_D}}, {4, DW + ((W_NW2*4+3) | DIR_BEG), 0, 1, 3, DW + ((W_NN2*4+3) | DIR_BEG), 14, 2, 2, {DW + W_NE2*4+3, DW + W_NN2*4+3, DW + ((W_WL1*4+2)|DIR_N3), DW + W_WR1*4+3, DW + W_NR1*4+3, DW + W_NL1*4+3}}, {4, DW + ((W_NW2*4+3) | DIR_BEG), 0, 0, 3, DW + ((W_NN2*4+3) | DIR_BEG), 14, 0, 2, {DW + W_NW4*4+3, DW + W_WW4*4+3, DW + W_NE4*4+3, DW + W_NN4*4+3, DW + ((W_WW2*4+2)|DIR_N3), DW + W_NW2*4+3}}, {4, DW + ((W_WW2*4+3) | DIR_BEG), 16, 2, 18, DW + ((W_SW2*4+3) | DIR_BEG), 30, 1, 19, {DW + W_SR1*4+3, DW + W_SL1*4+3, DW + ((W_WR1*4+0)|DIR_S0), DW + W_WL1*4+3, DW + W_SW2*4+3, DW + W_SS2*4+3}}, {4, DW + ((W_WW2*4+3) | DIR_BEG), 16, 1, 18, DW + ((W_SW2*4+3) | DIR_BEG), 30, 2, 19, {LW + LO_D, LW + LO_DQ, LW + LO_BMUX, LW + (LO_D|LD1), LW + (LO_DQ|LD1), LW + (LO_BMUX|LD1)}}, {4, DW + ((W_WW2*4+3) | DIR_BEG), 16, 0, 18, DW + ((W_SW2*4+3) | DIR_BEG), 30, 0, 19, {DW + W_WW2*4+3, DW + ((W_NW2*4+0)|DIR_S0), DW + W_SW4*4+3, DW + W_SS4*4+3, DW + ((W_WW4*4+0)|DIR_S0), DW + ((W_NW4*4+0)|DIR_S0)}}, {6, DW + ((W_NE2*4+3) | DIR_BEG), 0, 2, 3, DW + ((W_EE2*4+3) | DIR_BEG), 14, 1, 2, {LW + (LO_BMUX|LD1), LW + (LO_DQ|LD1), LW + (LO_D|LD1), LW + LO_BMUX, LW + LO_DQ, LW + LO_D}}, {6, DW + ((W_NE2*4+3) | DIR_BEG), 0, 1, 3, DW + ((W_EE2*4+3) | DIR_BEG), 14, 2, 2, {DW + W_NE2*4+3, DW + W_NN2*4+3, DW + W_EL1*4+3, DW + W_ER1*4+3, DW + W_NR1*4+3, DW + W_NL1*4+3}}, {6, DW + ((W_NE2*4+3) | DIR_BEG), 0, 0, 3, DW + ((W_EE2*4+3) | DIR_BEG), 14, 0, 2, {DW + W_EE4*4+3, DW + W_SE4*4+3, DW + W_NE4*4+3, DW + W_NN4*4+3, DW + W_EE2*4+3, DW + W_SE2*4+3}}, {6, DW + ((W_SS2*4+3) | DIR_BEG), 16, 2, 18, DW + ((W_SE2*4+3) | DIR_BEG), 30, 1, 19, {DW + W_SR1*4+3, DW + W_SL1*4+3, DW + W_ER1*4+3, DW + W_EL1*4+3, DW + W_SW2*4+3, DW + W_SS2*4+3}}, {6, DW + ((W_SS2*4+3) | DIR_BEG), 16, 1, 18, DW + ((W_SE2*4+3) | DIR_BEG), 30, 2, 19, {LW + LO_D, LW + LO_DQ, LW + LO_BMUX, LW + (LO_D|LD1), LW + (LO_DQ|LD1), LW + (LO_BMUX|LD1)}}, {6, DW + ((W_SS2*4+3) | DIR_BEG), 16, 0, 18, DW + ((W_SE2*4+3) | DIR_BEG), 30, 0, 19, {DW + W_SE2*4+3, DW + W_EE2*4+3, DW + W_SW4*4+3, DW + W_SS4*4+3, DW + W_SE4*4+3, DW + W_EE4*4+3}}, {8, DW + ((W_WR1*4+0) | DIR_BEG), 0, 2, 3, DW + ((W_NL1*4+2) | DIR_BEG), 14, 1, 2, {LW + (LO_BMUX|LD1), LW + (LO_DQ|LD1), LW + (LO_D|LD1), LW + LO_BMUX, LW + LO_DQ, LW + LO_D}}, {8, DW + ((W_WR1*4+0) | DIR_BEG), 0, 1, 3, DW + ((W_NL1*4+2) | DIR_BEG), 14, 2, 2, {DW + W_NE2*4+3, DW + W_NN2*4+3, DW + ((W_WL1*4+2)|DIR_N3), DW + W_WR1*4+3, DW + W_NR1*4+3, DW + W_NL1*4+3}}, {8, DW + ((W_WR1*4+0) | DIR_BEG), 0, 0, 3, DW + ((W_NL1*4+2) | DIR_BEG), 14, 0, 2, {DW + W_NW4*4+3, DW + W_WW4*4+3, DW + W_NE4*4+3, DW + W_NN4*4+3, DW + ((W_WW2*4+2)|DIR_N3), DW + W_NW2*4+3}}, {8, DW + ((W_SR1*4+0) | DIR_BEG), 16, 2, 18, DW + ((W_WL1*4+2) | DIR_BEG), 30, 1, 19, {DW + W_SR1*4+3, DW + W_SL1*4+3, DW + ((W_WR1*4+0)|DIR_S0), DW + W_WL1*4+3, DW + W_SW2*4+3, DW + W_SS2*4+3}}, {8, DW + ((W_SR1*4+0) | DIR_BEG), 16, 1, 18, DW + ((W_WL1*4+2) | DIR_BEG), 30, 2, 19, {LW + LO_D, LW + LO_DQ, LW + LO_BMUX, LW + (LO_D|LD1), LW + (LO_DQ|LD1), LW + (LO_BMUX|LD1)}}, {8, DW + ((W_SR1*4+0) | DIR_BEG), 16, 0, 18, DW + ((W_WL1*4+2) | DIR_BEG), 30, 0, 19, {DW + W_WW2*4+3, DW + ((W_NW2*4+0)|DIR_S0), DW + W_SW4*4+3, DW + W_SS4*4+3, DW + ((W_WW4*4+0)|DIR_S0), DW + ((W_NW4*4+0)|DIR_S0)}}, {10, DW + ((W_EL1*4+2) | DIR_BEG), 0, 2, 3, DW + ((W_NR1*4+3) | DIR_BEG), 14, 1, 2, {LW + (LO_BMUX|LD1), LW + (LO_DQ|LD1), LW + (LO_D|LD1), LW + LO_BMUX, LW + LO_DQ, LW + LO_D}}, {10, DW + ((W_EL1*4+2) | DIR_BEG), 0, 1, 3, DW + ((W_NR1*4+3) | DIR_BEG), 14, 2, 2, {DW + W_NE2*4+3, DW + W_NN2*4+3, DW + W_EL1*4+3, DW + W_ER1*4+3, DW + W_NR1*4+3, DW + W_NL1*4+3}}, {10, DW + ((W_EL1*4+2) | DIR_BEG), 0, 0, 3, DW + ((W_NR1*4+3) | DIR_BEG), 14, 0, 2, {DW + W_EE4*4+3, DW + W_SE4*4+3, DW + W_NE4*4+3, DW + W_NN4*4+3, DW + W_EE2*4+3, DW + W_SE2*4+3}}, {10, DW + ((W_SL1*4+3) | DIR_BEG), 16, 2, 18, DW + ((W_ER1*4+0) | DIR_BEG), 30, 1, 19, {DW + W_SR1*4+3, DW + W_SL1*4+3, DW + W_ER1*4+3, DW + W_EL1*4+3, DW + W_SW2*4+3, DW + W_SS2*4+3}}, {10, DW + ((W_SL1*4+3) | DIR_BEG), 16, 1, 18, DW + ((W_ER1*4+0) | DIR_BEG), 30, 2, 19, {LW + LO_D, LW + LO_DQ, LW + LO_BMUX, LW + (LO_D|LD1), LW + (LO_DQ|LD1), LW + (LO_BMUX|LD1)}}, {10, DW + ((W_SL1*4+3) | DIR_BEG), 16, 0, 18, DW + ((W_ER1*4+0) | DIR_BEG), 30, 0, 19, {DW + W_SE2*4+3, DW + W_EE2*4+3, DW + W_SW4*4+3, DW + W_SS4*4+3, DW + W_SE4*4+3, DW + W_EE4*4+3}}}; for (i = 0;; i++) { rc = src_to_bitpos(es, src, sizeof(src)/sizeof(*src)); if (rc) FAIL(rc); if (i >= 3) break; for (j = 0; j < sizeof(src)/sizeof(*src); j++) { src[j].m0_sw_to = wire_decrement(src[j].m0_sw_to); src[j].m0_two_bits_o += 32; src[j].m0_one_bit_start += 32; src[j].m1_sw_to = wire_decrement(src[j].m1_sw_to); src[j].m1_two_bits_o += 32; src[j].m1_one_bit_start += 32; for (k = 0; k < sizeof(src[0].src_wire)/sizeof(src[0].src_wire[0]); k++) src[j].src_wire[k] = wire_decrement(src[j].src_wire[k]); } } } // mip 12-18, decrementing directional wires (1024 switches) { struct sw_mip_src src[] = { {12, NO_WIRE, 0, 2, 2, NO_WIRE, 14, 2, 3, {DW + W_EL1*4+3, DW + W_ER1*4+3, DW + W_WL1*4+3, DW + W_WR1*4+3, DW + W_EE2*4+3, DW + W_SE2*4+3}}, {12, NO_WIRE, 0, 0, 2, NO_WIRE, 14, 0, 3, {DW + W_SS2*4+3, DW + W_SW2*4+3, DW + ((W_NW2*4+0)|DIR_S0), DW + W_WW2*4+3, DW + W_NE2*4+3, DW + W_NN2*4+3}}, {12, NO_WIRE, 0, 1, 2, NO_WIRE, 14, 1, 3, {NO_WIRE, NO_WIRE, DW + ((W_NL1*4+0)|DIR_S0), DW + W_NR1*4+3, DW + W_SL1*4+3, DW + W_SR1*4+3}}, {14, NO_WIRE, 0, 1, 3, NO_WIRE, 14, 1, 2, {DW + ((W_EL1*4+0)|DIR_S0), DW + W_ER1*4+3, DW + W_WL1*4+3, DW + ((W_WR1*4+0)|DIR_S0), DW + W_EE2*4+3, DW + W_SE2*4+3}}, {14, NO_WIRE, 0, 0, 3, NO_WIRE, 14, 0, 2, {DW + W_SS2*4+3, DW + W_SW2*4+3, DW + ((W_NW2*4+0)|DIR_S0), DW + W_WW2*4+3, DW + ((W_NE2*4+0)|DIR_S0), DW + ((W_NN2*4+0)|DIR_S0)}}, {14, NO_WIRE, 0, 2, 3, NO_WIRE, 14, 2, 2, {NO_WIRE, NO_WIRE, DW + ((W_NL1*4+0)|DIR_S0), DW + W_NR1*4+3, DW + W_SL1*4+3, DW + W_SR1*4+3}}, {16, NO_WIRE, 0, 2, 2, NO_WIRE, 14, 2, 3, {DW + W_EL1*4+3, DW + W_ER1*4+3, DW + W_WL1*4+3, DW + W_WR1*4+3, DW + W_EE2*4+3, DW + W_SE2*4+3}}, {16, NO_WIRE, 0, 0, 2, NO_WIRE, 14, 0, 3, {DW + W_SS2*4+3, DW + W_SW2*4+3, DW + W_NW2*4+3, DW + ((W_WW2*4+2)|DIR_N3), DW + W_NE2*4+3, DW + W_NN2*4+3}}, {16, NO_WIRE, 0, 1, 2, NO_WIRE, 14, 1, 3, {NO_WIRE, NO_WIRE, DW + W_NL1*4+3, DW + W_NR1*4+3, DW + W_SL1*4+3, DW + ((W_SR1*4+2)|DIR_N3)}}, {18, NO_WIRE, 0, 1, 3, NO_WIRE, 14, 1, 2, {DW + W_EL1*4+3, DW + ((W_ER1*4+2)|DIR_N3), DW + ((W_WL1*4+2)|DIR_N3), DW + W_WR1*4+3, DW + W_EE2*4+3, DW + W_SE2*4+3}}, {18, NO_WIRE, 0, 0, 3, NO_WIRE, 14, 0, 2, {DW + ((W_SS2*4+2)|DIR_N3), DW + ((W_SW2*4+2)|DIR_N3), DW + W_NW2*4+3, DW + ((W_WW2*4+2)|DIR_N3), DW + W_NE2*4+3, DW + W_NN2*4+3}}, {18, NO_WIRE, 0, 2, 3, NO_WIRE, 14, 2, 2, {NO_WIRE, NO_WIRE, DW + W_NL1*4+3, DW + W_NR1*4+3, DW + W_SL1*4+3, DW + ((W_SR1*4+2)|DIR_N3)}}}; for (i = 0; i < 8; i++) { for (j = 0; j < sizeof(src)/sizeof(*src); j++) { int logicin_o = ((src[j].minor-12)/2)*LOGIN_MIP_ROWS*LOGIN_ROW; logicin_o += i*LOGIN_ROW; src[j].m0_sw_to = logicin_matrix[logicin_o+0]; src[j].m1_sw_to = logicin_matrix[logicin_o+1]; if (i) { src[j].m0_two_bits_o += 16; src[j].m0_one_bit_start += 16; src[j].m1_two_bits_o += 16; src[j].m1_one_bit_start += 16; if (!(i%2)) // at 2, 4 and 6 we decrement the wires for (k = 0; k < sizeof(src[0].src_wire)/sizeof(src[0].src_wire[0]); k++) src[j].src_wire[k] = wire_decrement(src[j].src_wire[k]); } } rc = src_to_bitpos(es, src, sizeof(src)/sizeof(*src)); if (rc) FAIL(rc); } } // VCC/GND/GFAN, logicin and logicout sources // mip12-14 { int logicin_src[8][6] = { {VCC_WIRE, LW + (LO_D|LD1), LW + LO_DQ, LW + (LO_BMUX|LD1), LOGICIN_S62, LOGICIN_S20}, {GFAN1, LW + (LO_D|LD1), LW + LO_DQ, LW + (LO_BMUX|LD1), LOGICIN_S62, LOGICIN_S20}, {VCC_WIRE, LW + LO_C, LW + (LO_CQ|LD1), LW + LO_AMUX, LOGICIN_S62, LW + (LI_AX|LD1)}, {GFAN1, LW + LO_C, LW + (LO_CQ|LD1), LW + LO_AMUX, LOGICIN_S62, LW + (LI_AX|LD1)}, {VCC_WIRE, LW + (LO_B|LD1), LW + LO_BQ, LW + (LO_DMUX|LD1), LW + (LI_AX|LD1), LW + (LI_CI|LD1)}, {GFAN0, LW + (LO_B|LD1), LW + LO_BQ, LW + (LO_DMUX|LD1), LW + (LI_AX|LD1), LW + (LI_CI|LD1)}, {VCC_WIRE, LW + LO_A, LW + (LO_AQ|LD1), LW + LO_CMUX, LOGICIN20, LW + (LI_CI|LD1)}, {GFAN0, LW + LO_A, LW + (LO_AQ|LD1), LW + LO_CMUX, LOGICIN20, LW + (LI_CI|LD1)}, }; rc = mip_to_bitpos(es, 12, 3, 2, 3, 3, &logicin_src); if (rc) FAIL(rc); logicin_src[1][0] = logicin_src[3][0] = logicin_src[5][0] = logicin_src[7][0] = VCC_WIRE; logicin_src[0][0] = logicin_src[2][0] = GFAN1; logicin_src[4][0] = logicin_src[6][0] = GFAN0; rc = mip_to_bitpos(es, 14, 3, 3, 3, 2, &logicin_src); if (rc) FAIL(rc); } { int logicin_src[8][6] = { { LW + LI_BX, LOGICIN52 }, { LW + LI_BX, LOGICIN52 }, { LW + LI_BX, LW + (LI_DI|LD1) }, { LW + LI_BX, LW + (LI_DI|LD1) }, { LW + (LI_DI|LD1), LOGICIN_N28 }, { LW + (LI_DI|LD1), LOGICIN_N28 }, { LOGICIN_N52, LOGICIN_N28 }, { LOGICIN_N52, LOGICIN_N28 }}; rc = mip_to_bitpos(es, 12, 1, 2, 1, 3, &logicin_src); if (rc) FAIL(rc); rc = mip_to_bitpos(es, 14, 2, 3, 2, 2, &logicin_src); if (rc) FAIL(rc); } // mip16-18 { int logicin_src[8][6] = { {VCC_WIRE, LW + LO_D, LW + (LO_DQ|LD1), LW + LO_BMUX, LOGICIN_S36, LOGICIN_S44}, {GFAN1, LW + LO_D, LW + (LO_DQ|LD1), LW + LO_BMUX, LOGICIN_S36, LOGICIN_S44}, {VCC_WIRE, LW + (LO_C|LD1), LW + LO_CQ, LW + (LO_AMUX|LD1), LOGICIN_S36, LW + LI_AX}, {GFAN1, LW + (LO_C|LD1), LW + LO_CQ, LW + (LO_AMUX|LD1), LOGICIN_S36, LW + LI_AX}, {VCC_WIRE, LW + LO_B, LW + (LO_BQ|LD1), LW + LO_DMUX, LW + LI_AX, LW + (LI_CE|LD1)}, {GFAN0, LW + LO_B, LW + (LO_BQ|LD1), LW + LO_DMUX, LW + LI_AX, LW + (LI_CE|LD1)}, {VCC_WIRE, LW + (LO_A|LD1), LW + LO_AQ, LW + (LO_CMUX|LD1), LOGICIN44, LW + (LI_CE|LD1)}, {GFAN0, LW + (LO_A|LD1), LW + LO_AQ, LW + (LO_CMUX|LD1), LOGICIN44, LW + (LI_CE|LD1)}, }; rc = mip_to_bitpos(es, 16, 3, 2, 3, 3, &logicin_src); if (rc) FAIL(rc); logicin_src[1][0] = logicin_src[3][0] = logicin_src[5][0] = logicin_src[7][0] = VCC_WIRE; logicin_src[0][0] = logicin_src[2][0] = GFAN1; logicin_src[4][0] = logicin_src[6][0] = GFAN0; rc = mip_to_bitpos(es, 18, 3, 3, 3, 2, &logicin_src); if (rc) FAIL(rc); } { int logicin_src[8][6] = { { LW + (LI_BX|LD1), LOGICIN21 }, { LW + (LI_BX|LD1), LOGICIN21 }, { LW + (LI_BX|LD1), FAN_B }, { LW + (LI_BX|LD1), FAN_B }, { FAN_B, LOGICIN_N60 }, { FAN_B, LOGICIN_N60 }, { LOGICIN_N21, LOGICIN_N60 }, { LOGICIN_N21, LOGICIN_N60 }}; rc = mip_to_bitpos(es, 16, 1, 2, 1, 3, &logicin_src); if (rc) FAIL(rc); rc = mip_to_bitpos(es, 18, 2, 3, 2, 2, &logicin_src); if (rc) FAIL(rc); } // minor 20 switches (SR, CLK, GFAN = 113 switches (4 bidir added on other side)) { const struct sw_mi20_src src[] = { {SR1, 6, 3, 0, {GCLK11, GCLK10, GCLK13, GCLK12, GCLK9, GCLK8}}, {SR1, 6, 2, 0, {DW+W_WR1*4+2, DW+W_NR1*4+2, VCC_WIRE, GND_WIRE, DW+W_ER1*4+2, DW+W_SR1*4+2}}, {SR1, 6, 1, 0, {FAN_B, LW+(LI_DI|LD1), LW+(LI_BX|LD1), LW+LI_BX, GCLK15, GCLK14}}, {SR0, 8, 3, 10, {GCLK8, GCLK9, GCLK10, GCLK13, GCLK12, GCLK11}}, {SR0, 8, 2, 10, {GCLK14, GCLK15, LW+(LI_DI|LD1), LW+(LI_BX|LD1), LW+LI_BX, FAN_B}}, {SR0, 8, 1, 10, {DW+W_SR1*4+2, DW+W_ER1*4+2, DW+W_NR1*4+2, VCC_WIRE, NO_WIRE, DW+W_WR1*4+2}}, {CLK0, 16, 3, 18, {GCLK0, GCLK1, GCLK2, GCLK5, GCLK4, GCLK3}}, {CLK0, 16, 2, 18, {GCLK6, GCLK7, GCLK8, GCLK11, GCLK10, GCLK9}}, {CLK0, 16, 1, 18, {GCLK12, GCLK13, GCLK14, LW+(LI_BX|LD1), LW+(LI_CI|LD1), GCLK15}}, {CLK0, 16, 0, 18, {DW+W_NR1*4+2, DW+W_WR1*4+2, DW+W_SR1*4+1, VCC_WIRE, NO_WIRE, DW+W_ER1*4+1}}, {CLK1, 46, 3, 40, {GCLK3, GCLK2, GCLK5, GCLK4, GCLK1, GCLK0}}, {CLK1, 46, 2, 40, {GCLK15, GCLK14, LW+(LI_BX|LD1), LW+(LI_CI|LD1), GCLK13, GCLK12}}, {CLK1, 46, 1, 40, {GCLK9, GCLK8, GCLK11, GCLK10, GCLK7, GCLK6}}, {CLK1, 46, 0, 40, {DW+W_ER1*4+1, DW+W_SR1*4+1, VCC_WIRE, NO_WIRE, DW+W_WR1*4+2, DW+W_NR1*4+2}}, {GFAN0, 54, 3, 48, {GCLK3, GCLK4, GCLK5, GCLK2, GCLK1, GCLK0}}, {GFAN0, 54, 2, 48, {DW+W_WR1*4+1, GND_WIRE, VCC_WIRE, DW+W_NR1*4+1, DW+W_ER1*4+1, DW+W_SR1*4+1}}, {GFAN0, 54, 1, 48, {LW+(LI_CE|LD1), NO_WIRE, NO_WIRE, LW+(LI_CI|LD1), GCLK7, GCLK6}}, {GFAN1, 56, 3, 58, {GCLK0, GCLK1, GCLK4, GCLK5, GCLK2, GCLK3}}, {GFAN1, 56, 2, 58, {GCLK6, GCLK7, LW+(LI_AX|LD1), LW+LI_AX, NO_WIRE, NO_WIRE}}, {GFAN1, 56, 1, 58, {DW+W_SR1*4+1, DW+W_ER1*4+1, GND_WIRE, VCC_WIRE, DW+W_NR1*4+1, DW+W_WR1*4+1}}}; for (i = 0; i < sizeof(src)/sizeof(*src); i++) { for (j = 0; j < sizeof(src[0].src_wire)/sizeof(src[0].src_wire[0]); j++) { if (src[i].src_wire[j] == NO_WIRE) continue; es->bit_pos[es->num_bit_pos].minor = 20; es->bit_pos[es->num_bit_pos].two_bits_o = src[i].two_bits_o; es->bit_pos[es->num_bit_pos].two_bits_val = src[i].two_bits_val; es->bit_pos[es->num_bit_pos].one_bit_o = src[i].one_bit_start + j; es->bit_pos[es->num_bit_pos].uni_dir = fpga_switch_lookup(es->model, es->model->first_routing_y, es->model->first_routing_x, fpga_wirestr_i(es->model, src[i].src_wire[j]), fpga_wirestr_i(es->model, src[i].sw_to)); if (es->bit_pos[es->num_bit_pos].uni_dir == NO_SWITCH) { fprintf(stderr, "#E routing switch %s -> %s not in model\n", fpga_wirestr(es->model, src[i].src_wire[j]), fpga_wirestr(es->model, src[i].sw_to)); FAIL(EINVAL); } es->bit_pos[es->num_bit_pos].rev_dir = NO_SWITCH; es->num_bit_pos++; } }} return 0; fail: return rc; } int extract_model(struct fpga_model* model, struct fpga_bits* bits) { struct extract_state es; net_idx_t net_idx; int i, rc; rc = construct_extract_state(&es, model); if (rc) FAIL(rc); es.bits = bits; for (i = 0; i < sizeof(s_default_bits)/sizeof(s_default_bits[0]); i++) { if (!get_bitp(bits, &s_default_bits[i])) FAIL(EINVAL); clear_bitp(bits, &s_default_bits[i]); } rc = extract_iobs(model, bits); if (rc) FAIL(rc); rc = extract_logic(model, bits); if (rc) FAIL(rc); rc = extract_switches(&es); if (rc) FAIL(rc); // turn switches into nets if (model->nets) HERE(); // should be empty here for (i = 0; i < es.num_yx_pos; i++) { rc = fpga_net_new(model, &net_idx); if (rc) FAIL(rc); rc = fpga_net_add_sw(model, net_idx, es.yx_pos[i].y, es.yx_pos[i].x, &es.yx_pos[i].idx, 1); if (rc) FAIL(rc); } return 0; fail: return rc; } int printf_swbits(struct fpga_model* model) { struct extract_state es; char bit_str[129]; int i, j, width, rc; rc = construct_extract_state(&es, model); if (rc) FAIL(rc); for (i = 0; i < es.num_bit_pos; i++) { width = (es.bit_pos[i].minor == 20) ? 64 : 128; for (j = 0; j < width; j++) bit_str[j] = '0'; bit_str[j] = 0; if (es.bit_pos[i].two_bits_val & 2) bit_str[es.bit_pos[i].two_bits_o] = '1'; if (es.bit_pos[i].two_bits_val & 1) bit_str[es.bit_pos[i].two_bits_o+1] = '1'; bit_str[es.bit_pos[i].one_bit_o] = '1'; printf("mi%02i %s %s %s %s\n", es.bit_pos[i].minor, fpga_switch_str(model, model->first_routing_y, model->first_routing_x, es.bit_pos[i].uni_dir, SW_TO), bit_str, fpga_switch_str(model, model->first_routing_y, model->first_routing_x, es.bit_pos[i].uni_dir, SW_FROM), es.bit_pos[i].rev_dir != NO_SWITCH ? "<->" : "->"); } return 0; fail: return rc; } int write_model(struct fpga_bits* bits, struct fpga_model* model) { int i; for (i = 0; i < sizeof(s_default_bits)/sizeof(s_default_bits[0]); i++) set_bitp(bits, &s_default_bits[i]); return 0; }