// // Author: Wolfgang Spraul // // This is free and unencumbered software released into the public domain. // For details see the UNLICENSE file at the root of the source tree. // #include #include #include #include #include #include // columns // 'L' = X+L logic block // 'l' = X+L logic block without IO at top and bottom // 'M' = X+M logic block // 'm' = X+M logic block without IO at top and bottom // 'B' = block ram // 'D' = dsp (macc) // 'R' = registers and center IO/logic column // // wiring on the left and right side is described with 16 // characters for each row - 'W' = wired, 'U' = unwired // order is top-down #define XC6SLX9_ROWS 4 #define XC6SLX9_COLUMNS "MLBMLDMRMlMLBML" #define XC6SLX9_LEFT_WIRING \ /* row 3 */ "UWUWUWUW" "WWWWUUUU" \ /* row 2 */ "UUUUUUUU" "WWWWWWUU" \ /* row 1 */ "WWWUUWUU" "WUUWUUWU" \ /* row 0 */ "UWUUWUUW" "UUWWWWUU" #define XC6SLX9_RIGHT_WIRING \ /* row 3 */ "UUWWUWUW" "WWWWUUUU" \ /* row 2 */ "UUUUUUUU" "WWWWWWUU" \ /* row 1 */ "WWWUUWUU" "WUUWUUWU" \ /* row 0 */ "UWUUWUUW" "UUWWWWUU" struct fpga_model { int tile_x_range, tile_y_range; struct fpga_tile* tiles; }; enum fpga_tile_type { NA, ROUTING, ROUTING_BRK, ROUTING_VIA, HCLK_ROUTING_XM, HCLK_ROUTING_XL, HCLK_LOGIC_XM, HCLK_LOGIC_XL, LOGIC_XM, LOGIC_XL, REGH_ROUTING_XM, REGH_ROUTING_XL, REGH_LOGIC_XM, REGH_LOGIC_XL, BRAM_ROUTING, BRAM_ROUTING_BRK, BRAM, BRAM_ROUTING_TERM_T, BRAM_ROUTING_TERM_B, BRAM_ROUTING_VIA_TERM_T, BRAM_ROUTING_VIA_TERM_B, BRAM_TERM_LT, BRAM_TERM_RT, BRAM_TERM_LB, BRAM_TERM_RB, HCLK_BRAM_ROUTING, HCLK_BRAM_ROUTING_VIA, HCLK_BRAM, REGH_BRAM_ROUTING, REGH_BRAM_ROUTING_VIA, REGH_BRAM_L, REGH_BRAM_R, MACC, HCLK_MACC_ROUTING, HCLK_MACC_ROUTING_VIA, HCLK_MACC, REGH_MACC_ROUTING, REGH_MACC_ROUTING_VIA, REGH_MACC_L, PLL_T, DCM_T, PLL_B, DCM_B, REG_T, REG_TERM_T, REG_TERM_B, REG_B, REGV_TERM_T, REGV_TERM_B, HCLK_REGV, REGV, REGV_BRK, REGV_T, REGV_B, REGV_MIDBUF_T, REGV_HCLKBUF_T, REGV_HCLKBUF_B, REGV_MIDBUF_B, REGC_ROUTING, REGC_LOGIC, REGC_CMT, CENTER, // unique center tile in the middle of the chip IO_T, IO_B, IO_TERM_T, IO_TERM_B, IO_ROUTING, IO_LOGIC_TERM_T, IO_LOGIC_TERM_B, IO_OUTER_T, IO_INNER_T, IO_OUTER_B, IO_INNER_B, IO_BUFPLL_TERM_T, IO_LOGIC_REG_TERM_T, IO_BUFPLL_TERM_B, IO_LOGIC_REG_TERM_B, LOGIC_ROUTING_TERM_B, LOGIC_NOIO_TERM_B, MACC_ROUTING_TERM_T, MACC_ROUTING_TERM_B, MACC_VIA_TERM_T, MACC_TERM_TL, MACC_TERM_TR, MACC_TERM_BL, MACC_TERM_BR, ROUTING_VIA_REGC, ROUTING_VIA_IO, ROUTING_VIA_IO_DCM, ROUTING_VIA_CARRY, CORNER_TERM_L, CORNER_TERM_R, IO_TERM_L_UPPER_TOP, IO_TERM_L_UPPER_BOT, IO_TERM_L_LOWER_TOP, IO_TERM_L_LOWER_BOT, IO_TERM_R_UPPER_TOP, IO_TERM_R_UPPER_BOT, IO_TERM_R_LOWER_TOP, IO_TERM_R_LOWER_BOT, IO_TERM_L, IO_TERM_R, HCLK_TERM_L, HCLK_TERM_R, REGH_IO_TERM_L, REGH_IO_TERM_R, REG_L, REG_R, IO_PCI_L, IO_PCI_R, IO_RDY_L, IO_RDY_R, IO_L, IO_R, IO_PCI_CONN_L, IO_PCI_CONN_R, CORNER_TERM_T, CORNER_TERM_B, ROUTING_IO_L, HCLK_ROUTING_IO_L, HCLK_ROUTING_IO_R, REGH_ROUTING_IO_L, REGH_ROUTING_IO_R, ROUTING_IO_L_BRK, ROUTING_GCLK, REGH_IO_L, REGH_IO_R, REGH_MCB, HCLK_MCB, ROUTING_IO_VIA_L, ROUTING_IO_VIA_R, ROUTING_IO_PCI_CE_L, ROUTING_IO_PCI_CE_R, CORNER_TL, CORNER_BL, CORNER_TR_UPPER, CORNER_TR_LOWER, CORNER_BR_UPPER, CORNER_BR_LOWER, HCLK_IO_TOP_UP_L, HCLK_IO_TOP_UP_R, HCLK_IO_TOP_SPLIT_L, HCLK_IO_TOP_SPLIT_R, HCLK_IO_TOP_DN_L, HCLK_IO_TOP_DN_R, HCLK_IO_BOT_UP_L, HCLK_IO_BOT_UP_R, HCLK_IO_BOT_SPLIT_L, HCLK_IO_BOT_SPLIT_R, HCLK_IO_BOT_DN_L, HCLK_IO_BOT_DN_R, }; struct fpga_tile { enum fpga_tile_type type; // expect up to 64 devices per tile int num_devices; struct fpga_device* devices; // expect up to 28k connections to other tiles per tile // 3*16 bit per connection: // - x coordinate of other tile (16bit) // - y coordinate of other tile (16bit) // - endpoint index in other tile (16bit) int num_conns; // conns array is 3*num_conns 16-bit words uint16_t* conns; // num_conns*3 16-bit words: 16(x)-16(y)-16(endpoint) // expect up to 5k endpoints per tile // 16-bit index into conns (not yet multiplied by 3) int num_endpoints; uint16_t* endpoints; // endpoints0 are conceptual endpoints without outgoing wires. // Imagine their indices added to the end of num_endpoints, so // the first endpoint0 is at index num_endpoints, the second one // at num_endpoints+1, and so on. int num_endpoints0; // expect up to 4k connection pairs per tile // 32bit: 31 off: not in use on: used // 30 off: unidirectional on: bidirectional // 29:15 from, index into endpoints // 14:0 to, index into endpoints int num_connect_pairs; uint32_t* connect_pairs; }; struct fpga_model* fpga_build_model(int fpga_rows, const char* columns, const char* left_wiring, const char* right_wiring); const char* fpga_tiletype_str(enum fpga_tile_type type); unsigned long hash_djb2(const unsigned char* str); // Strings are distributed among 1024 bins. Each bin // is one continuous stream of zero-terminated strings // prefixed with a 2*16-bit header. The allocation // increment for each bin is 32k. struct hashed_strarray { uint32_t bin_offsets[256*256]; // min offset is 4, 0 means no entry uint16_t index_to_bin[256*256]; char* bin_strings[1024]; int bin_len[1024]; // points behind the last zero-termination }; const char* strarray_lookup(struct hashed_strarray* array, uint16_t idx); int strarray_find_or_add(struct hashed_strarray* array, const char* str, uint16_t* idx); void strarray_init(struct hashed_strarray* array); void strarray_free(struct hashed_strarray* array);