// // Author: Wolfgang Spraul // // This is free and unencumbered software released into the public domain. // For details see the UNLICENSE file at the root of the source tree. // #include #include #include #include #include #include #include #include struct fpga_model { int tile_x_range, tile_y_range; struct fpga_tile* tiles; }; enum fpga_tile_type { NA, ROUTING, ROUTING_BRK, ROUTING_VIA, HCLK_ROUTING_XM, HCLK_ROUTING_XL, HCLK_LOGIC_XM, HCLK_LOGIC_XL, LOGIC_XM, LOGIC_XL, REGH_ROUTING_XM, REGH_ROUTING_XL, REGH_LOGIC_XM, REGH_LOGIC_XL, BRAM_ROUTING, BRAM_ROUTING_BRK, BRAM, HCLK_BRAM_ROUTING, HCLK_BRAM_ROUTING_VIA, HCLK_BRAM, REGH_BRAM_ROUTING, REGH_BRAM_ROUTING_VIA, REGH_BRAM_L, REGH_BRAM_R, MACC, HCLK_MACC_ROUTING, HCLK_MACC_ROUTING_VIA, HCLK_MACC, REGH_MACC_ROUTING, REGH_MACC_ROUTING_VIA, REGH_MACC_L, PLL_T, DCM_T, PLL_B, DCM_B, HCLK_REG_V, REG_V, REG_V_BRK, REG_V_TOP, REG_V_BOTTOM, REG_V_MIDBUF_TOP, REG_V_HCLKBUF_TOP, REG_V_HCLKBUF_BOTTOM, REG_V_MIDBUF_BOTTOM, REGC_ROUTING, REGC_LOGIC, REGC_CMT, CENTER, // unique center tile in the middle of the chip }; const char* fpga_ttstr[] = // tile type strings { [NA] = "NA", [ROUTING] = "ROUTING", [ROUTING_BRK] = "ROUTING_BRK", [ROUTING_VIA] = "ROUTING_VIA", [HCLK_ROUTING_XM] = "HCLK_ROUTING_XM", [HCLK_ROUTING_XL] = "HCLK_ROUTING_XL", [HCLK_LOGIC_XM] = "HCLK_LOGIC_XM", [HCLK_LOGIC_XL] = "HCLK_LOGIC_XL", [LOGIC_XM] = "LOGIC_XM", [LOGIC_XL] = "LOGIC_XL", [REGH_ROUTING_XM] = "REGH_ROUTING_XM", [REGH_ROUTING_XL] = "REGH_ROUTING_XL", [REGH_LOGIC_XM] = "REGH_LOGIC_XM", [REGH_LOGIC_XL] = "REGH_LOGIC_XL", [BRAM_ROUTING] = "BRAM_ROUTING", [BRAM_ROUTING_BRK] = "BRAM_ROUTING_BRK", [BRAM] = "BRAM", [HCLK_BRAM_ROUTING] = "HCLK_BRAM_ROUTING", [HCLK_BRAM_ROUTING_VIA] = "HCLK_BRAM_ROUTING_VIA", [HCLK_BRAM] = "HCLK_BRAM", [REGH_BRAM_ROUTING] = "REGH_BRAM_ROUTING", [REGH_BRAM_ROUTING_VIA] = "REGH_BRAM_ROUTING_VIA", [REGH_BRAM_L] = "REGH_BRAM_L", [REGH_BRAM_R] = "REGH_BRAM_R", [MACC] = "MACC", [HCLK_MACC_ROUTING] = "HCLK_MACC_ROUTING", [HCLK_MACC_ROUTING_VIA] = "HCLK_MACC_ROUTING_VIA", [HCLK_MACC] = "HCLK_MACC", [REGH_MACC_ROUTING] = "REGH_MACC_ROUTING", [REGH_MACC_ROUTING_VIA] = "REGH_MACC_ROUTING_VIA", [REGH_MACC_L] = "REGH_MACC_L", [PLL_T] = "PLL_T", [DCM_T] = "DCM_T", [PLL_B] = "PLL_B", [DCM_B] = "DCM_B", [HCLK_REG_V] = "HCLK_REG_V", [REG_V] = "REG_V", [REG_V_BRK] = "REG_V_BRK", [REG_V_TOP] = "REG_V_TOP", [REG_V_BOTTOM] = "REG_V_BOTTOM", [REG_V_MIDBUF_TOP] = "REG_V_MIDBUF_TOP", [REG_V_HCLKBUF_TOP] = "REG_V_HCLKBUF_TOP", [REG_V_HCLKBUF_BOTTOM] = "REG_V_HCLKBUF_BOTTOM", [REG_V_MIDBUF_BOTTOM] = "REG_V_MIDBUF_BOTTOM", [REGC_ROUTING] = "REGC_ROUTING", [REGC_LOGIC] = "REGC_LOGIC", [REGC_CMT] = "REGC_CMT", [CENTER] = "CENTER", }; struct fpga_tile { enum fpga_tile_type type; }; // columns // 'L' = X+L logic block // 'M' = X+M logic block // 'B' = block ram // 'D' = dsp (macc) // 'R' = registers and center IO/logic column #define XC6SLX9_ROWS 4 #define XC6SLX9_COLUMNS "MLBMLDMRMLMLBML" struct fpga_model* build_model(int fpga_rows, const char* columns); void printf_model(struct fpga_model* model); int main(int argc, char** argv) { struct fpga_model* model = 0; // // build memory model // model = build_model(XC6SLX9_ROWS, XC6SLX9_COLUMNS); if (!model) goto fail; // // write svg // printf_model(model); return EXIT_SUCCESS; fail: return EXIT_FAILURE; } struct fpga_model* build_model(int fpga_rows, const char* columns) { int tile_rows, tile_columns, i, j, k, l, row_top_y, center_row, left_side; struct fpga_model* model; tile_rows = 1 /* middle */ + (8+1+8)*fpga_rows + 2+2 /* two extra tiles at top and bottom */; tile_columns = 5 /* left */ + 5 /* right */; for (i = 0; columns[i] != 0; i++) { tile_columns += 2; // 2 for logic blocks L/M and minimum for others if (columns[i] == 'B' || columns[i] == 'D') tile_columns++; // 3 for bram or macc else if (columns[i] == 'R') tile_columns+=2; // 2+2 for middle IO+logic+PLL/DCM } model = calloc(1 /* nelem */, sizeof(struct fpga_model)); if (!model) { fprintf(stderr, "%i: Out of memory.\n", __LINE__); return 0; } model->tile_x_range = tile_columns; model->tile_y_range = tile_rows; model->tiles = calloc(tile_columns * tile_rows, sizeof(struct fpga_tile)); if (!model->tiles) { fprintf(stderr, "%i: Out of memory.\n", __LINE__); free(model); return 0; } for (i = 0; i < tile_rows * tile_columns; i++) model->tiles[i].type = NA; if (!(tile_rows % 2)) fprintf(stderr, "Unexpected even number of tile rows (%i).\n", tile_rows); i = 5; // left IO columns center_row = 2 /* top IO files */ + (fpga_rows/2)*(8+1/*middle of row clock*/+8); left_side = 1; // turn off (=right side) when reaching the 'R' middle column for (j = 0; columns[j]; j++) { switch (columns[j]) { case 'L': case 'M': for (k = fpga_rows-1; k >= 0; k--) { row_top_y = 2 /* top IO tiles */ + (fpga_rows-1-k)*(8+1/*middle of row clock*/+8); if (k<(fpga_rows/2)) row_top_y++; // middle system tiles (center row) for (l = ((k == fpga_rows-1) ? 2 : 0); l < ((k > 0) ? 16 : 14); l++) { model->tiles[(row_top_y+(l<8?l:l+1))*tile_columns + i].type = (l < 15) ? ROUTING : ROUTING_BRK; model->tiles[(row_top_y+(l<8?l:l+1))*tile_columns + i + 1].type = (columns[j] == 'L') ? LOGIC_XL : LOGIC_XM; } if (columns[j] == 'L') { model->tiles[(row_top_y+8)*tile_columns + i].type = HCLK_ROUTING_XL; model->tiles[(row_top_y+8)*tile_columns + i + 1].type = HCLK_LOGIC_XL; } else { model->tiles[(row_top_y+8)*tile_columns + i].type = HCLK_ROUTING_XM; model->tiles[(row_top_y+8)*tile_columns + i + 1].type = HCLK_LOGIC_XM; } } if (columns[j] == 'L') { model->tiles[center_row*tile_columns + i].type = REGH_ROUTING_XL; model->tiles[center_row*tile_columns + i + 1].type = REGH_LOGIC_XL; } else { model->tiles[center_row*tile_columns + i].type = REGH_ROUTING_XM; model->tiles[center_row*tile_columns + i + 1].type = REGH_LOGIC_XM; } i += 2; break; case 'B': for (k = fpga_rows-1; k >= 0; k--) { row_top_y = 2 /* top IO tiles */ + (fpga_rows-1-k)*(8+1/*middle of row clock*/+8); if (k<(fpga_rows/2)) row_top_y++; // middle system tiles for (l = 0; l < 16; l++) { model->tiles[(row_top_y+(l<8?l:l+1))*tile_columns + i].type = (l < 15) ? BRAM_ROUTING : BRAM_ROUTING_BRK; model->tiles[(row_top_y+(l<8?l:l+1))*tile_columns + i + 1].type = ROUTING_VIA; if (!(l%4)) model->tiles[(row_top_y+3+(l<8?l:l+1))*tile_columns + i + 2].type = BRAM; } model->tiles[(row_top_y+8)*tile_columns + i].type = HCLK_BRAM_ROUTING; model->tiles[(row_top_y+8)*tile_columns + i + 1].type = HCLK_BRAM_ROUTING_VIA; model->tiles[(row_top_y+8)*tile_columns + i + 2].type = HCLK_BRAM; } model->tiles[center_row*tile_columns + i].type = REGH_BRAM_ROUTING; model->tiles[center_row*tile_columns + i + 1].type = REGH_BRAM_ROUTING_VIA; model->tiles[center_row*tile_columns + i + 2].type = left_side ? REGH_BRAM_L : REGH_BRAM_R; i += 3; break; case 'D': for (k = fpga_rows-1; k >= 0; k--) { row_top_y = 2 /* top IO tiles */ + (fpga_rows-1-k)*(8+1/*middle of row clock*/+8); if (k<(fpga_rows/2)) row_top_y++; // middle system tiles for (l = 0; l < 16; l++) { model->tiles[(row_top_y+(l<8?l:l+1))*tile_columns + i].type = (l < 15) ? ROUTING : ROUTING_BRK; model->tiles[(row_top_y+(l<8?l:l+1))*tile_columns + i + 1].type = ROUTING_VIA; if (!(l%4)) model->tiles[(row_top_y+3+(l<8?l:l+1))*tile_columns + i + 2].type = MACC; } model->tiles[(row_top_y+8)*tile_columns + i].type = HCLK_MACC_ROUTING; model->tiles[(row_top_y+8)*tile_columns + i + 1].type = HCLK_MACC_ROUTING_VIA; model->tiles[(row_top_y+8)*tile_columns + i + 2].type = HCLK_MACC; } model->tiles[center_row*tile_columns + i].type = REGH_MACC_ROUTING; model->tiles[center_row*tile_columns + i + 1].type = REGH_MACC_ROUTING_VIA; model->tiles[center_row*tile_columns + i + 2].type = REGH_MACC_L; i += 3; break; case 'R': left_side = 0; for (k = fpga_rows-1; k >= 0; k--) { row_top_y = 2 /* top IO tiles */ + (fpga_rows-1-k)*(8+1/*middle of row clock*/+8); if (k<(fpga_rows/2)) row_top_y++; // middle system tiles for (l = 0; l < 16; l++) { if (l == 7) { if (k%2) // odd model->tiles[(row_top_y+l)*tile_columns + i + 2].type = (k<(fpga_rows/2)) ? PLL_B : PLL_T; else // even model->tiles[(row_top_y+l)*tile_columns + i + 2].type = (k<(fpga_rows/2)) ? DCM_B : DCM_T; } // four midbuf tiles, in the middle of the top and bottom halves if (l == 15) { if (k == fpga_rows*3/4) model->tiles[(row_top_y+l+1)*tile_columns + i + 3].type = REG_V_MIDBUF_TOP; else if (k == fpga_rows/4) model->tiles[(row_top_y+l+1)*tile_columns + i + 3].type = REG_V_HCLKBUF_BOTTOM; else model->tiles[(row_top_y+l+1)*tile_columns + i + 3].type = REG_V_BRK; } else if (l == 0 && k == fpga_rows*3/4-1) { model->tiles[(row_top_y+l)*tile_columns + i + 3].type = REG_V_HCLKBUF_TOP; } else if (l == 0 && k == fpga_rows/4-1) { model->tiles[(row_top_y+l)*tile_columns + i + 3].type = REG_V_MIDBUF_BOTTOM; } else if (l == 8) { model->tiles[(row_top_y+l+1)*tile_columns + i + 3].type = (ktiles[(row_top_y+(l<8?l:l+1))*tile_columns + i + 3].type = REG_V; } model->tiles[(row_top_y+8)*tile_columns + i].type = HCLK_ROUTING_XL; model->tiles[(row_top_y+8)*tile_columns + i + 1].type = HCLK_LOGIC_XL; model->tiles[(row_top_y+8)*tile_columns + i + 3].type = HCLK_REG_V; } model->tiles[center_row*tile_columns + i].type = REGC_ROUTING; model->tiles[center_row*tile_columns + i + 1].type = REGC_LOGIC; model->tiles[center_row*tile_columns + i + 2].type = REGC_CMT; model->tiles[center_row*tile_columns + i + 3].type = CENTER; i += 4; break; default: fprintf(stderr, "Unexpected column identifier '%c'\n", columns[i]); break; } } return model; } void printf_model(struct fpga_model* model) { static const xmlChar* empty_svg = (const xmlChar*) "\n" "\n" "\n" "\n"; xmlDocPtr doc = 0; xmlXPathContextPtr xpathCtx = 0; xmlXPathObjectPtr xpathObj = 0; xmlNodePtr new_node; char str[128]; int i, j; // can't get indent formatting to work - use 'xmllint --pretty 1 -' // on the output for now xmlInitParser(); doc = xmlParseDoc(empty_svg); if (!doc) { fprintf(stderr, "Internal error %i.\n", __LINE__); goto fail; } xpathCtx = xmlXPathNewContext(doc); if (!xpathCtx) { fprintf(stderr, "Cannot create XPath context.\n"); goto fail; } xmlXPathRegisterNs(xpathCtx, BAD_CAST "svg", BAD_CAST "http://www.w3.org/2000/svg"); xpathObj = xmlXPathEvalExpression(BAD_CAST "//svg:*[@id='root']", xpathCtx); if (!xpathObj) { fprintf(stderr, "Cannot evaluate root expression.\n"); goto fail; } if (!xpathObj->nodesetval) { fprintf(stderr, "Cannot find root node.\n"); goto fail; } if (xpathObj->nodesetval->nodeNr != 1) { fprintf(stderr, "Found %i root nodes.\n", xpathObj->nodesetval->nodeNr); goto fail; } for (i = 0; i < model->tile_y_range; i++) { for (j = 0; j < model->tile_x_range; j++) { strcpy(str, fpga_ttstr[model->tiles[i*model->tile_x_range+j].type]); new_node = xmlNewChild(xpathObj->nodesetval->nodeTab[0], 0 /* xmlNsPtr */, BAD_CAST "text", BAD_CAST str); xmlSetProp(new_node, BAD_CAST "x", xmlXPathCastNumberToString(130 + j*130)); xmlSetProp(new_node, BAD_CAST "y", xmlXPathCastNumberToString(40 + i*20)); xmlSetProp(new_node, BAD_CAST "fpga:tile_y", BAD_CAST xmlXPathCastNumberToString(i)); xmlSetProp(new_node, BAD_CAST "fpga:tile_x", BAD_CAST xmlXPathCastNumberToString(j)); } } xmlSetProp(xpathObj->nodesetval->nodeTab[0], BAD_CAST "width", BAD_CAST xmlXPathCastNumberToString(model->tile_x_range * 130 + 65)); xmlSetProp(xpathObj->nodesetval->nodeTab[0], BAD_CAST "height", BAD_CAST xmlXPathCastNumberToString(model->tile_y_range * 20 + 60)); xmlDocFormatDump(stdout, doc, 1 /* format */); xmlXPathFreeObject(xpathObj); xmlXPathFreeContext(xpathCtx); xmlFreeDoc(doc); xmlCleanupParser(); return; fail: if (xpathObj) xmlXPathFreeObject(xpathObj); if (xpathCtx) xmlXPathFreeContext(xpathCtx); if (doc) xmlFreeDoc(doc); xmlCleanupParser(); }