fpgatools/new_fp.c
2012-07-29 05:59:59 +02:00

352 lines
12 KiB
C

//
// Author: Wolfgang Spraul
//
// This is free and unencumbered software released into the public domain.
// For details see the UNLICENSE file at the root of the source tree.
//
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include <sys/stat.h>
#include "model.h"
#define PRINT_FLAG(f) if (tf & f) { printf (" %s", #f); tf &= ~f; }
int printf_tiles(struct fpga_model* model);
int printf_static_conns(struct fpga_model* model);
int main(int argc, char** argv)
{
struct fpga_model model;
int rc;
if ((rc = fpga_build_model(&model, XC6SLX9_ROWS, XC6SLX9_COLUMNS,
XC6SLX9_LEFT_WIRING, XC6SLX9_RIGHT_WIRING)))
goto fail;
printf("fpga_floorplan_format 1\n");
//
// What needs to be in the file:
// - all devices, configuration for each device
// probably multiple lines that are adding config strings
// - wires maybe separately, and/or as named connection points
// in tiles?
// - connection pairs that can be enabled/disabled
// - global flags and configuration registers
// - the static data should be optional (unused conn pairs,
// unused devices, wires)
//
// - each line should be in the global namespace, line order
// should not matter
// - file should be easily parsable with bison
// - lines should typically not exceed 80 characters
//
rc = printf_tiles(&model);
if (rc) goto fail;
rc = printf_static_conns(&model);
if (rc) goto fail;
// todo: static_net <lists all wires connected together statically in a long line>
return EXIT_SUCCESS;
fail:
return rc;
}
int printf_tiles(struct fpga_model* model)
{
struct fpga_tile* tile;
int x, y;
for (x = 0; x < model->tile_x_range; x++) {
printf("\n");
for (y = 0; y < model->tile_y_range; y++) {
tile = &model->tiles[y*model->tile_x_range + x];
printf("tile y%02i x%02i", y, x);
if (tile->type == NA && !(tile->flags)) {
printf(" -\n");
continue;
}
if (tile->type != NA)
printf(" name %s", fpga_tiletype_str(tile->type));
if (tile->flags) {
int tf = tile->flags;
printf(" flags");
PRINT_FLAG(TF_LOGIC_XL_DEV);
PRINT_FLAG(TF_LOGIC_XM_DEV);
PRINT_FLAG(TF_IOLOGIC_DELAY_DEV);
if (tf)
printf(" 0x%x", tf);
}
printf("\n");
}
}
return 0;
}
struct conn_printf_data
{
int src_x, src_y; // src_x is -1 for empty entry
char src_conn_point[41];
int num_combined_wires; // 0 for no suffix, otherwise 4 for 0:3 etc.
int dest_x, dest_y;
char dest_conn_point[41];
};
#define MAX_CONN_PRINTF_ENTRIES 40000
static struct conn_printf_data s_conn_printf_buf[MAX_CONN_PRINTF_ENTRIES];
static int s_conn_printf_entries;
int sort_by_tile(const void* a, const void* b)
{
int i, rc;
struct conn_printf_data* _a = (struct conn_printf_data*) a;
struct conn_printf_data* _b = (struct conn_printf_data*) b;
if (_a->src_x < 0 && _b->src_x < 0) return 0;
if (_a->src_x < 0) return -1;
if (_b->src_x < 0) return 1;
if (_a->src_x != _b->src_x)
return _a->src_x - _b->src_x;
if (_a->src_y != _b->src_y)
return _a->src_y - _b->src_y;
if (_a->dest_x != _b->dest_x)
return _a->dest_x - _b->dest_x;
if (_a->dest_y != _b->dest_y)
return _a->dest_y - _b->dest_y;
if (_a->num_combined_wires != _b->num_combined_wires)
return _b->num_combined_wires - _a->num_combined_wires;
rc = compare_with_number(_a->src_conn_point, _b->src_conn_point);
if (rc) return rc;
// following is a special version of strcmp(_a->dest_conn_point, _b->dest_conn_point)
// to push '_' before digits.
for (i = 0; _a->dest_conn_point[i]; i++) {
if (_a->dest_conn_point[i] != _b->dest_conn_point[i]) {
// The point here is to get a NN2B0 -> NN2E_S0 before
// a NN2B0 -> NN2E0 so that later wire combinations
// are easier.
if (_a->dest_conn_point[i] >= '0' && _a->dest_conn_point[i] <= '9'
&& _b->dest_conn_point[i] == '_')
return 1;
if (_b->dest_conn_point[i] >= '0' && _b->dest_conn_point[i] <= '9'
&& _a->dest_conn_point[i] == '_')
return -1;
return _a->dest_conn_point[i] - _b->dest_conn_point[i];
}
}
return _a->dest_conn_point[i] - _b->dest_conn_point[i];
}
int find_last_wire_digit(const char* wire_str, int* start_o, int* end_o, int* num)
{
// There are some known suffixes that may confuse our
// 'last digit' logic so we skip those.
static const char suffix[8][16] =
{ "_S0", "_N3", "_INT0", "_INT1", "_INT2", "_INT3", "" };
int i, suffix_len, right_bound, _end_o, base;
right_bound = strlen(wire_str);
for (i = 0; suffix[i][0]; i++) {
suffix_len = strlen(suffix[i]);
if (right_bound > suffix_len
&& !strcmp(&wire_str[right_bound - suffix_len],
suffix[i])) {
right_bound -= suffix_len;
break;
}
}
_end_o = -1;
for (i = right_bound; i; i--) {
if (wire_str[i-1] >= '0' && wire_str[i-1] <= '9' && _end_o == -1) {
_end_o = i;
continue;
}
if ((wire_str[i-1] < '0' || wire_str[i-1] > '9') && _end_o != -1) {
*start_o = i;
*end_o = _end_o;
*num = 0;
base = 1;
for (i = *end_o - 1; i >= *start_o; i--) {
*num += (wire_str[i] - '0')*base;
base *= 10;
}
return 1;
}
}
return 0;
}
void sort_and_reduce_printf_buf()
{
int src_digit_start_o, src_digit_end_o, src_digit;
int dest_digit_start_o, dest_digit_end_o, dest_digit;
int second_src_digit_start_o, second_src_digit_end_o, second_src_digit;
int second_dest_digit_start_o, second_dest_digit_end_o, second_dest_digit;
int i, j, sequence_size;
int sequence[100]; // support up to 100 elements in sequence
char old_suffix[41];
if (s_conn_printf_entries < 2)
return;
// First sort by y/x src, then y/x dest, then src conn point, then
// dest conn points - all in preparation of the numbered wires reduction.
qsort(s_conn_printf_buf, s_conn_printf_entries,
sizeof(s_conn_printf_buf[0]), sort_by_tile);
// Reduce numbered wire sets.
for (i = 0; i < s_conn_printf_entries-1; i++) {
if (s_conn_printf_buf[i].src_x < 0)
continue;
if (!find_last_wire_digit(s_conn_printf_buf[i].src_conn_point, &src_digit_start_o, &src_digit_end_o, &src_digit)
|| !find_last_wire_digit(s_conn_printf_buf[i].dest_conn_point, &dest_digit_start_o, &dest_digit_end_o, &dest_digit))
continue;
// Search for a contiguous sequence of increasing numbers, but support
// skipping over unrelated pairs that may be inside our sequence due
// to sorting.
sequence[0] = i;
sequence_size = 1;
for (j = i+1; j < s_conn_printf_entries; j++) {
if (j > sequence[sequence_size-1]+4) // search over at most 4 non-matches
break;
if (s_conn_printf_buf[j].src_x < 0)
continue;
// is the j connection from and to the same tiles as the i connection?
if (s_conn_printf_buf[i].src_x != s_conn_printf_buf[j].src_x
|| s_conn_printf_buf[i].src_y != s_conn_printf_buf[j].src_y
|| s_conn_printf_buf[i].dest_x != s_conn_printf_buf[j].dest_x
|| s_conn_printf_buf[i].dest_y != s_conn_printf_buf[j].dest_y)
continue;
if (!find_last_wire_digit(s_conn_printf_buf[j].src_conn_point, &second_src_digit_start_o, &second_src_digit_end_o, &second_src_digit))
continue;
if (!find_last_wire_digit(s_conn_printf_buf[j].dest_conn_point, &second_dest_digit_start_o, &second_dest_digit_end_o, &second_dest_digit))
continue;
if (second_src_digit != src_digit+sequence_size
|| second_dest_digit != dest_digit+sequence_size)
continue;
if (src_digit_start_o != second_src_digit_start_o
|| strncmp(s_conn_printf_buf[i].src_conn_point, s_conn_printf_buf[j].src_conn_point, src_digit_start_o))
continue;
if (strcmp(&s_conn_printf_buf[i].src_conn_point[src_digit_end_o], &s_conn_printf_buf[j].src_conn_point[second_src_digit_end_o]))
continue;
if (dest_digit_start_o != second_dest_digit_start_o
|| strncmp(s_conn_printf_buf[i].dest_conn_point, s_conn_printf_buf[j].dest_conn_point, dest_digit_start_o))
continue;
if (strcmp(&s_conn_printf_buf[i].dest_conn_point[dest_digit_end_o], &s_conn_printf_buf[j].dest_conn_point[second_dest_digit_end_o]))
continue;
if (sequence_size >= sizeof(sequence)/sizeof(sequence[0])) {
fprintf(stderr, "Internal error - too long sequence in line %i\n", __LINE__);
break;
}
sequence[sequence_size++] = j;
}
if (sequence_size < 2)
continue;
strcpy(old_suffix, &s_conn_printf_buf[sequence[0]].src_conn_point[src_digit_end_o]);
sprintf(&s_conn_printf_buf[sequence[0]].src_conn_point[src_digit_start_o], "%i:%i%s", src_digit, src_digit+sequence_size-1, old_suffix);
strcpy(old_suffix, &s_conn_printf_buf[sequence[0]].dest_conn_point[dest_digit_end_o]);
sprintf(&s_conn_printf_buf[sequence[0]].dest_conn_point[dest_digit_start_o], "%i:%i%s", dest_digit, dest_digit+sequence_size-1, old_suffix);
s_conn_printf_buf[sequence[0]].num_combined_wires = sequence_size;
for (i = 1; i < sequence_size; i++)
s_conn_printf_buf[sequence[i]].src_x = -1;
i = sequence[0];
}
// Second round of sorting, this time the largest numbered wire
// sets are defined and will move up.
qsort(s_conn_printf_buf, s_conn_printf_entries, sizeof(s_conn_printf_buf[0]),
sort_by_tile);
}
int printf_static_conns(struct fpga_model* model)
{
struct fpga_tile* tile;
char tmp_line[512];
const char* conn_point_name_src, *other_tile_connpt_str;
uint16_t other_tile_connpt_str_i;
int x, y, i, j, conn_point_dests_o, num_dests_for_this_conn_point;
int other_tile_x, other_tile_y, first_conn_printed;
for (x = 0; x < model->tile_x_range; x++) {
for (y = 0; y < model->tile_y_range; y++) {
tile = &model->tiles[y*model->tile_x_range + x];
s_conn_printf_entries = 0;
for (i = 0; i < tile->num_conn_point_names; i++) {
conn_point_dests_o = tile->conn_point_names[i*2];
if (i < tile->num_conn_point_names-1)
num_dests_for_this_conn_point = tile->conn_point_names[(i+1)*2] - conn_point_dests_o;
else
num_dests_for_this_conn_point = tile->num_conn_point_dests - conn_point_dests_o;
if (!num_dests_for_this_conn_point)
continue;
conn_point_name_src = strarray_lookup(&model->str, tile->conn_point_names[i*2+1]);
if (!conn_point_name_src) {
fprintf(stderr, "Cannot lookup src conn point name index %i, x%i y%i i%i\n",
tile->conn_point_names[i*2+1], x, y, i);
continue;
}
for (j = 0; j < num_dests_for_this_conn_point; j++) {
other_tile_x = tile->conn_point_dests[(conn_point_dests_o+j)*3];
other_tile_y = tile->conn_point_dests[(conn_point_dests_o+j)*3+1];
other_tile_connpt_str_i = tile->conn_point_dests[(conn_point_dests_o+j)*3+2];
other_tile_connpt_str = strarray_lookup(&model->str, other_tile_connpt_str_i);
if (!other_tile_connpt_str) {
fprintf(stderr, "Lookup err line %i, dest pt %i, dest x%i y%i, from x%i y%i j%i num_dests %i src_pt %s\n",
__LINE__, other_tile_connpt_str_i, other_tile_x, other_tile_y, x, y, j, num_dests_for_this_conn_point, conn_point_name_src);
continue;
}
s_conn_printf_buf[s_conn_printf_entries].src_y = y;
s_conn_printf_buf[s_conn_printf_entries].src_x = x;
strcpy(s_conn_printf_buf[s_conn_printf_entries].src_conn_point, conn_point_name_src);
s_conn_printf_buf[s_conn_printf_entries].num_combined_wires = 0;
s_conn_printf_buf[s_conn_printf_entries].dest_y = other_tile_y;
s_conn_printf_buf[s_conn_printf_entries].dest_x = other_tile_x;
strcpy(s_conn_printf_buf[s_conn_printf_entries].dest_conn_point, other_tile_connpt_str);
s_conn_printf_entries++;
}
}
sort_and_reduce_printf_buf();
first_conn_printed = 0;
for (i = 0; i < s_conn_printf_entries; i++) {
if (s_conn_printf_buf[i].src_x < 0)
continue;
if (!first_conn_printed) {
printf("\n");
first_conn_printed = 1;
}
sprintf(tmp_line, "static_conn y%02i-x%02i-%s ",
s_conn_printf_buf[i].src_y,
s_conn_printf_buf[i].src_x,
s_conn_printf_buf[i].src_conn_point);
j = strlen(tmp_line);
while (j < 45)
tmp_line[j++] = ' ';
sprintf(&tmp_line[j], "y%02i-x%02i-%s\n",
s_conn_printf_buf[i].dest_y,
s_conn_printf_buf[i].dest_x,
s_conn_printf_buf[i].dest_conn_point);
printf(tmp_line);
}
}
}
return 0;
}