fpgatools/libs/bit_frames.c
2012-09-19 21:49:30 +08:00

701 lines
19 KiB
C

//
// Author: Wolfgang Spraul
//
// This is free and unencumbered software released into the public domain.
// For details see the UNLICENSE file at the root of the source tree.
//
#include "model.h"
#include "bit.h"
#include "parts.h"
#include "control.h"
#define HCLK_BYTES 2
static uint8_t* get_first_minor(struct fpga_bits* bits, int row, int major)
{
int i, num_frames;
num_frames = 0;
for (i = 0; i < major; i++)
num_frames += get_major_minors(XC6SLX9, i);
return &bits->d[(row*FRAMES_PER_ROW + num_frames)*FRAME_SIZE];
}
static int get_bit(struct fpga_bits* bits,
int row, int major, int minor, int bit_i)
{
return frame_get_bit(get_first_minor(bits, row, major)
+ minor*FRAME_SIZE, bit_i);
}
static void set_bit(struct fpga_bits* bits,
int row, int major, int minor, int bit_i)
{
return frame_set_bit(get_first_minor(bits, row, major)
+ minor*FRAME_SIZE, bit_i);
}
static void clear_bit(struct fpga_bits* bits,
int row, int major, int minor, int bit_i)
{
return frame_clear_bit(get_first_minor(bits, row, major)
+ minor*FRAME_SIZE, bit_i);
}
struct bit_pos
{
int row;
int major;
int minor;
int bit_i;
};
static int get_bitp(struct fpga_bits* bits, struct bit_pos* pos)
{
return get_bit(bits, pos->row, pos->major, pos->minor, pos->bit_i);
}
static void set_bitp(struct fpga_bits* bits, struct bit_pos* pos)
{
set_bit(bits, pos->row, pos->major, pos->minor, pos->bit_i);
}
static void clear_bitp(struct fpga_bits* bits, struct bit_pos* pos)
{
clear_bit(bits, pos->row, pos->major, pos->minor, pos->bit_i);
}
static struct bit_pos s_default_bits[] = {
{ 0, 0, 3, 66 },
{ 0, 1, 23, 1034 },
{ 0, 1, 23, 1035 },
{ 0, 1, 23, 1039 },
{ 2, 0, 3, 66 }};
struct sw_yxpos
{
int y;
int x;
swidx_t idx;
};
#define MAX_YX_SWITCHES 1024
struct extract_state
{
struct fpga_model* model;
struct fpga_bits* bits;
// yx switches are fully extracted ones pointing into the
// model, stored here for later processing into nets.
int num_yx_pos;
struct sw_yxpos yx_pos[MAX_YX_SWITCHES]; // needs to be dynamically alloced...
};
static int write_iobs(struct fpga_bits* bits, struct fpga_model* model)
{
int i, y, x, type_idx, part_idx, dev_idx, rc;
struct fpga_device* dev;
uint32_t* u32_p;
const char* name;
for (i = 0; (name = fpga_enum_iob(model, i, &y, &x, &type_idx)); i++) {
dev_idx = fpga_dev_idx(model, y, x, DEV_IOB, type_idx);
if (dev_idx == NO_DEV) FAIL(EINVAL);
dev = FPGA_DEV(model, y, x, dev_idx);
if (!dev->instantiated)
continue;
part_idx = find_iob_sitename(XC6SLX9, name);
if (part_idx == -1) {
HERE();
continue;
}
u32_p = (uint32_t*)
&bits->d[IOB_DATA_START + part_idx*IOB_ENTRY_LEN];
if (dev->u.iob.O_used) {
u32_p[0] = 0x00000180;
u32_p[1] = 0x06001100;
} else if (dev->u.iob.I_mux == IMUX_I) {
u32_p[0] = 0x00000107;
u32_p[1] = 0x0B002400;
}
}
return 0;
fail:
return rc;
}
static int extract_iobs(struct fpga_model* model, struct fpga_bits* bits)
{
int i, num_iobs, iob_y, iob_x, iob_idx, dev_idx, rc;
uint32_t* u32_p;
const char* iob_sitename;
struct fpga_device* dev;
num_iobs = get_num_iobs(XC6SLX9);
for (i = 0; i < num_iobs; i++) {
u32_p = (uint32_t*) &bits->d[IOB_DATA_START + i*IOB_ENTRY_LEN];
if (!u32_p[0] && !u32_p[1])
continue;
iob_sitename = get_iob_sitename(XC6SLX9, i);
if (!iob_sitename) {
HERE();
continue;
}
rc = fpga_find_iob(model, iob_sitename, &iob_y, &iob_x, &iob_idx);
if (rc) FAIL(rc);
dev_idx = fpga_dev_idx(model, iob_y, iob_x, DEV_IOB, iob_idx);
if (dev_idx == NO_DEV) FAIL(EINVAL);
dev = FPGA_DEV(model, iob_y, iob_x, dev_idx);
// we only support 2 hardcoded types of IOB right now
// todo: bit 7 goes on when out-net connected?
if ((u32_p[0] & 0xFFFFFF7F) == 0x00000100
&& u32_p[1] == 0x06001100) {
dev->instantiated = 1;
strcpy(dev->u.iob.ostandard, IO_LVCMOS33);
dev->u.iob.drive_strength = 12;
dev->u.iob.O_used = 1;
dev->u.iob.slew = SLEW_SLOW;
dev->u.iob.suspend = SUSP_3STATE;
u32_p[0] = 0;
u32_p[1] = 0;
} else if (u32_p[0] == 0x00000107
&& u32_p[1] == 0x0B002400) {
dev->instantiated = 1;
strcpy(dev->u.iob.istandard, IO_LVCMOS33);
dev->u.iob.bypass_mux = BYPASS_MUX_I;
dev->u.iob.I_mux = IMUX_I;
u32_p[0] = 0;
u32_p[1] = 0;
} else HERE();
}
return 0;
fail:
return rc;
}
static int extract_logic(struct fpga_model* model, struct fpga_bits* bits)
{
int dev_idx, row, row_pos, rc;
int x, y, byte_off;
uint8_t* u8_p;
uint64_t u64;
const char* lut_str;
for (x = LEFT_SIDE_WIDTH; x < model->x_width-RIGHT_SIDE_WIDTH; x++) {
if (!is_atx(X_FABRIC_LOGIC_COL|X_CENTER_LOGIC_COL, model, x))
continue;
for (y = TOP_IO_TILES; y < model->y_height - BOT_IO_TILES; y++) {
if (!has_device_type(model, y, x, DEV_LOGIC, LOGIC_M))
continue;
row = which_row(y, model);
row_pos = pos_in_row(y, model);
if (row == -1 || row_pos == -1 || row_pos == 8) {
HERE();
continue;
}
if (row_pos > 8) row_pos--;
u8_p = get_first_minor(bits, row, model->x_major[x]);
byte_off = row_pos * 8;
if (row_pos >= 8) byte_off += HCLK_BYTES;
// M device
dev_idx = fpga_dev_idx(model, y, x, DEV_LOGIC, DEV_LOGM);
if (dev_idx == NO_DEV) FAIL(EINVAL);
// A6_LUT
if (frame_get_u32(u8_p + 24*FRAME_SIZE + byte_off + 4)
|| frame_get_u32(u8_p + 25*FRAME_SIZE + byte_off + 4)) {
u64 = read_lut64(u8_p + 24*FRAME_SIZE, (byte_off+4)*8);
{ int logic_base[6] = {0,1,0,0,1,0};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGM,
LUT_A, 6, lut_str, ZTERM);
if (rc) FAIL(rc);
*(uint32_t*)(u8_p+24*FRAME_SIZE+byte_off+4) = 0;
*(uint32_t*)(u8_p+25*FRAME_SIZE+byte_off+4) = 0;
}
}
// B6_LUT
if (frame_get_u32(u8_p + 21*FRAME_SIZE + byte_off + 4)
|| frame_get_u32(u8_p + 22*FRAME_SIZE + byte_off + 4)) {
u64 = read_lut64(u8_p + 21*FRAME_SIZE, (byte_off+4)*8);
{ int logic_base[6] = {1,1,0,1,0,1};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGM,
LUT_B, 6, lut_str, ZTERM);
if (rc) FAIL(rc);
*(uint32_t*)(u8_p+21*FRAME_SIZE+byte_off+4) = 0;
*(uint32_t*)(u8_p+22*FRAME_SIZE+byte_off+4) = 0;
}
}
// C6_LUT
if (frame_get_u32(u8_p + 24*FRAME_SIZE + byte_off)
|| frame_get_u32(u8_p + 25*FRAME_SIZE + byte_off)) {
u64 = read_lut64(u8_p + 24*FRAME_SIZE, byte_off*8);
{ int logic_base[6] = {0,1,0,0,1,0};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGM,
LUT_C, 6, lut_str, ZTERM);
if (rc) FAIL(rc);
*(uint32_t*)(u8_p+24*FRAME_SIZE+byte_off) = 0;
*(uint32_t*)(u8_p+25*FRAME_SIZE+byte_off) = 0;
}
}
// D6_LUT
if (frame_get_u32(u8_p + 21*FRAME_SIZE + byte_off)
|| frame_get_u32(u8_p + 22*FRAME_SIZE + byte_off)) {
u64 = read_lut64(u8_p + 21*FRAME_SIZE, byte_off*8);
{ int logic_base[6] = {1,1,0,1,0,1};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 1); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGM,
LUT_D, 6, lut_str, ZTERM);
if (rc) FAIL(rc);
*(uint32_t*)(u8_p+21*FRAME_SIZE+byte_off) = 0;
*(uint32_t*)(u8_p+22*FRAME_SIZE+byte_off) = 0;
}
}
// X device
u64 = frame_get_u64(u8_p + 26*FRAME_SIZE + byte_off);
if ( u64 ) {
// 21, 22, 36 and 37 are actually not default
// and can go off with the FFMUXes or routing
// say D over the FF to DQ etc. (AFFMUX=b37,
// BFFMUX=b36, CFFMUX=b22, DFFMUX=b21).
if (!(u64 & (1ULL<<1) && u64 & (1ULL<<2)
&& u64 & (1ULL<<7) && u64 & (1ULL<<21)
&& u64 & (1ULL<<22) && u64 & (1ULL<<36)
&& u64 & (1ULL<<37) && u64 & (1ULL<<39))) {
HERE();
continue;
}
if (u64 & ~(0x000000B000600086ULL)) {
HERE();
continue;
}
dev_idx = fpga_dev_idx(model, y, x, DEV_LOGIC, DEV_LOGX);
if (dev_idx == NO_DEV) FAIL(EINVAL);
*(uint64_t*)(u8_p+26*FRAME_SIZE+byte_off) = 0;
// A6_LUT
u64 = read_lut64(u8_p + 27*FRAME_SIZE, (byte_off+4)*8);
{ int logic_base[6] = {1,1,0,1,1,0};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGX,
LUT_A, 6, lut_str, ZTERM);
if (rc) FAIL(rc);
*(uint32_t*)(u8_p+27*FRAME_SIZE+byte_off+4) = 0;
*(uint32_t*)(u8_p+28*FRAME_SIZE+byte_off+4) = 0;
}
// B6_LUT
u64 = read_lut64(u8_p + 29*FRAME_SIZE, (byte_off+4)*8);
{ int logic_base[6] = {1,1,0,1,1,0};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGX,
LUT_B, 6, lut_str, ZTERM);
*(uint32_t*)(u8_p+29*FRAME_SIZE+byte_off+4) = 0;
*(uint32_t*)(u8_p+30*FRAME_SIZE+byte_off+4) = 0;
}
// C6_LUT
u64 = read_lut64(u8_p + 27*FRAME_SIZE, byte_off*8);
{ int logic_base[6] = {0,1,0,0,0,1};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGX,
LUT_C, 6, lut_str, ZTERM);
*(uint32_t*)(u8_p+27*FRAME_SIZE+byte_off) = 0;
*(uint32_t*)(u8_p+28*FRAME_SIZE+byte_off) = 0;
}
// D6_LUT
u64 = read_lut64(u8_p + 29*FRAME_SIZE, byte_off*8);
{ int logic_base[6] = {0,1,0,0,0,1};
lut_str = lut2bool(u64, 64, &logic_base, /*flip_b0*/ 0); }
if (*lut_str) {
rc = fdev_logic_set_lut(model, y, x, DEV_LOGX,
LUT_D, 6, lut_str, ZTERM);
*(uint32_t*)(u8_p+29*FRAME_SIZE+byte_off) = 0;
*(uint32_t*)(u8_p+30*FRAME_SIZE+byte_off) = 0;
}
}
}
}
return 0;
fail:
return rc;
}
static int bitpos_is_set(struct extract_state* es, int y, int x,
struct xc6_routing_bitpos* swpos, int* is_set)
{
int row_num, row_pos, start_in_frame, two_bits_val, rc;
*is_set = 0;
is_in_row(es->model, y, &row_num, &row_pos);
if (row_num == -1 || row_pos == -1
|| row_pos == HCLK_POS) FAIL(EINVAL);
if (row_pos > HCLK_POS)
start_in_frame = (row_pos-1)*64 + 16;
else
start_in_frame = row_pos*64;
if (swpos->minor == 20) {
two_bits_val = (get_bit(es->bits, row_num, es->model->x_major[x],
20, start_in_frame + swpos->two_bits_o) << 1)
| (get_bit(es->bits, row_num, es->model->x_major[x],
20, start_in_frame + swpos->two_bits_o+1) << 2);
if (two_bits_val != swpos->two_bits_val)
return 0;
if (!get_bit(es->bits, row_num, es->model->x_major[x], 20,
start_in_frame + swpos->one_bit_o))
return 0;
} else {
two_bits_val =
(get_bit(es->bits, row_num, es->model->x_major[x], swpos->minor,
start_in_frame + swpos->two_bits_o/2) << 1)
| (get_bit(es->bits, row_num, es->model->x_major[x], swpos->minor+1,
start_in_frame + swpos->two_bits_o/2) << 2);
if (two_bits_val != swpos->two_bits_val)
return 0;
if (!get_bit(es->bits, row_num, es->model->x_major[x],
swpos->minor + (swpos->one_bit_o&1),
start_in_frame + swpos->one_bit_o/2))
return 0;
}
*is_set = 1;
return 0;
fail:
return rc;
}
static int bitpos_clear_bits(struct extract_state* es, int y, int x,
struct xc6_routing_bitpos* swpos)
{
int row_num, row_pos, start_in_frame, rc;
is_in_row(es->model, y, &row_num, &row_pos);
if (row_num == -1 || row_pos == -1
|| row_pos == HCLK_POS) FAIL(EINVAL);
if (row_pos > HCLK_POS)
start_in_frame = (row_pos-1)*64 + 16;
else
start_in_frame = row_pos*64;
if (swpos->minor == 20) {
clear_bit(es->bits, row_num, es->model->x_major[x], swpos->minor,
start_in_frame + swpos->two_bits_o);
clear_bit(es->bits, row_num, es->model->x_major[x], swpos->minor,
start_in_frame + swpos->two_bits_o+1);
clear_bit(es->bits, row_num, es->model->x_major[x], swpos->minor,
start_in_frame + swpos->one_bit_o);
} else {
clear_bit(es->bits, row_num, es->model->x_major[x], swpos->minor,
start_in_frame + swpos->two_bits_o/2);
clear_bit(es->bits, row_num, es->model->x_major[x], swpos->minor + 1,
start_in_frame + swpos->two_bits_o/2);
clear_bit(es->bits, row_num, es->model->x_major[x], swpos->minor + (swpos->one_bit_o&1),
start_in_frame + swpos->one_bit_o/2);
}
return 0;
fail:
return rc;
}
static int bitpos_set_bits(struct fpga_bits* bits, struct fpga_model* model,
int y, int x, struct xc6_routing_bitpos* swpos)
{
int row_num, row_pos, start_in_frame, rc;
is_in_row(model, y, &row_num, &row_pos);
if (row_num == -1 || row_pos == -1
|| row_pos == HCLK_POS) FAIL(EINVAL);
if (row_pos > HCLK_POS)
start_in_frame = (row_pos-1)*64 + 16;
else
start_in_frame = row_pos*64;
if (swpos->minor == 20) {
if (swpos->two_bits_val & 0x02)
set_bit(bits, row_num, model->x_major[x], swpos->minor,
start_in_frame + swpos->two_bits_o);
if (swpos->two_bits_val & 0x01)
set_bit(bits, row_num, model->x_major[x], swpos->minor,
start_in_frame + swpos->two_bits_o+1);
set_bit(bits, row_num, model->x_major[x], swpos->minor,
start_in_frame + swpos->one_bit_o);
} else {
if (swpos->two_bits_val & 0x02)
set_bit(bits, row_num, model->x_major[x], swpos->minor,
start_in_frame + swpos->two_bits_o/2);
if (swpos->two_bits_val & 0x01)
set_bit(bits, row_num, model->x_major[x], swpos->minor + 1,
start_in_frame + swpos->two_bits_o/2);
set_bit(bits, row_num, model->x_major[x], swpos->minor + (swpos->one_bit_o&1),
start_in_frame + swpos->one_bit_o/2);
}
return 0;
fail:
return rc;
}
static int extract_routing_switches(struct extract_state* es, int y, int x)
{
struct fpga_tile* tile;
swidx_t sw_idx;
int i, is_set, rc;
tile = YX_TILE(es->model, y, x);
for (i = 0; i < es->model->num_bitpos; i++) {
rc = bitpos_is_set(es, y, x, &es->model->sw_bitpos[i], &is_set);
if (rc) FAIL(rc);
if (!is_set) continue;
sw_idx = fpga_switch_lookup(es->model, y, x,
fpga_wire2str_i(es->model, es->model->sw_bitpos[i].from),
fpga_wire2str_i(es->model, es->model->sw_bitpos[i].to));
if (sw_idx == NO_SWITCH) FAIL(EINVAL);
// todo: es->model->sw_bitpos[i].bidir handling
if (tile->switches[sw_idx] & SWITCH_BIDIRECTIONAL)
HERE();
if (tile->switches[sw_idx] & SWITCH_USED)
HERE();
if (es->num_yx_pos >= MAX_YX_SWITCHES)
{ FAIL(ENOTSUP); }
es->yx_pos[es->num_yx_pos].y = y;
es->yx_pos[es->num_yx_pos].x = x;
es->yx_pos[es->num_yx_pos].idx = sw_idx;
es->num_yx_pos++;
rc = bitpos_clear_bits(es, y, x, &es->model->sw_bitpos[i]);
if (rc) FAIL(rc);
}
return 0;
fail:
return rc;
}
static int extract_switches(struct extract_state* es)
{
int x, y, rc;
for (x = 0; x < es->model->x_width; x++) {
for (y = 0; y < es->model->y_height; y++) {
if (is_atx(X_ROUTING_COL, es->model, x)
&& y >= TOP_IO_TILES
&& y < es->model->y_height-BOT_IO_TILES
&& !is_aty(Y_ROW_HORIZ_AXSYMM|Y_CHIP_HORIZ_REGS,
es->model, y)) {
rc = extract_routing_switches(es, y, x);
if (rc) FAIL(rc);
}
}
}
return 0;
fail:
return rc;
}
static int construct_extract_state(struct extract_state* es,
struct fpga_model* model)
{
memset(es, 0, sizeof(*es));
es->model = model;
return 0;
}
int extract_model(struct fpga_model* model, struct fpga_bits* bits)
{
struct extract_state es;
net_idx_t net_idx;
int i, rc;
rc = construct_extract_state(&es, model);
if (rc) FAIL(rc);
es.bits = bits;
for (i = 0; i < sizeof(s_default_bits)/sizeof(s_default_bits[0]); i++) {
if (!get_bitp(bits, &s_default_bits[i]))
FAIL(EINVAL);
clear_bitp(bits, &s_default_bits[i]);
}
rc = extract_iobs(model, bits);
if (rc) FAIL(rc);
rc = extract_logic(model, bits);
if (rc) FAIL(rc);
rc = extract_switches(&es);
if (rc) FAIL(rc);
// turn switches into nets
if (model->nets)
HERE(); // should be empty here
for (i = 0; i < es.num_yx_pos; i++) {
rc = fnet_new(model, &net_idx);
if (rc) FAIL(rc);
rc = fnet_add_sw(model, net_idx, es.yx_pos[i].y,
es.yx_pos[i].x, &es.yx_pos[i].idx, 1);
if (rc) FAIL(rc);
}
return 0;
fail:
return rc;
}
int printf_swbits(struct fpga_model* model)
{
char bit_str[129];
int i, j, width;
for (i = 0; i < model->num_bitpos; i++) {
width = (model->sw_bitpos[i].minor == 20) ? 64 : 128;
for (j = 0; j < width; j++)
bit_str[j] = '0';
bit_str[j] = 0;
if (model->sw_bitpos[i].two_bits_val & 2)
bit_str[model->sw_bitpos[i].two_bits_o] = '1';
if (model->sw_bitpos[i].two_bits_val & 1)
bit_str[model->sw_bitpos[i].two_bits_o+1] = '1';
bit_str[model->sw_bitpos[i].one_bit_o] = '1';
printf("mi%02i %s %s %s %s\n", model->sw_bitpos[i].minor,
fpga_wire2str(model->sw_bitpos[i].to),
bit_str,
fpga_wire2str(model->sw_bitpos[i].from),
model->sw_bitpos[i].bidir ? "<->" : "->");
}
return 0;
}
static int find_bitpos(struct fpga_model* model, int y, int x, swidx_t sw)
{
enum extra_wires from_w, to_w;
const char* from_str, *to_str;
int i;
from_str = fpga_switch_str(model, y, x, sw, SW_FROM);
to_str = fpga_switch_str(model, y, x, sw, SW_TO);
from_w = fpga_str2wire(from_str);
to_w = fpga_str2wire(to_str);
if (from_w == NO_WIRE || to_w == NO_WIRE) {
HERE();
return -1;
}
for (i = 0; i < model->num_bitpos; i++) {
if (model->sw_bitpos[i].from == from_w
&& model->sw_bitpos[i].to == to_w)
return i;
if (model->sw_bitpos[i].bidir
&& model->sw_bitpos[i].to == from_w
&& model->sw_bitpos[i].from == to_w) {
if (!fpga_switch_is_bidir(model, y, x, sw))
HERE();
return i;
}
}
fprintf(stderr, "#E switch %s (%i) to %s (%i) not in model\n",
from_str, from_w, to_str, to_w);
return -1;
}
static int write_switches(struct fpga_bits* bits, struct fpga_model* model)
{
struct fpga_tile* tile;
int x, y, i, bit_pos, rc;
for (x = 0; x < model->x_width; x++) {
for (y = 0; y < model->y_height; y++) {
if (!is_atx(X_ROUTING_COL, model, x)
|| y < TOP_IO_TILES
|| y >= model->y_height-BOT_IO_TILES
|| is_aty(Y_ROW_HORIZ_AXSYMM|Y_CHIP_HORIZ_REGS,
model, y))
continue;
tile = YX_TILE(model, y, x);
// go through enabled switches, lookup in sw_bitpos
// and set bits
for (i = 0; i < tile->num_switches; i++) {
if (!(tile->switches[i] & SWITCH_USED))
continue;
bit_pos = find_bitpos(model, y, x, i);
if (bit_pos == -1)
continue;
rc = bitpos_set_bits(bits, model, y, x,
&model->sw_bitpos[bit_pos]);
if (rc) FAIL(rc);
}
}
}
return 0;
fail:
return rc;
}
static int write_logic(struct fpga_bits* bits, struct fpga_model* model)
{
int dev_idx, row, row_pos, rc;
int x, y, byte_off;
struct fpga_device* dev;
uint8_t* u8_p;
for (x = LEFT_SIDE_WIDTH; x < model->x_width-RIGHT_SIDE_WIDTH; x++) {
if (!is_atx(X_FABRIC_LOGIC_COL|X_CENTER_LOGIC_COL, model, x))
continue;
for (y = TOP_IO_TILES; y < model->y_height - BOT_IO_TILES; y++) {
if (!has_device_type(model, y, x, DEV_LOGIC, LOGIC_M))
continue;
row = which_row(y, model);
row_pos = pos_in_row(y, model);
if (row == -1 || row_pos == -1 || row_pos == 8) {
HERE();
continue;
}
if (row_pos > 8) row_pos--;
u8_p = get_first_minor(bits, row, model->x_major[x]);
byte_off = row_pos * 8;
if (row_pos >= 8) byte_off += HCLK_BYTES;
// X device
dev_idx = fpga_dev_idx(model, y, x, DEV_LOGIC, DEV_LOGX);
if (dev_idx == NO_DEV) FAIL(EINVAL);
dev = FPGA_DEV(model, y, x, dev_idx);
if (!dev->instantiated)
continue;
printf("y%02i x%02i major %i byte_off %i\n", y, x, model->x_major[x], byte_off);
}
}
return 0;
fail:
return rc;
}
int write_model(struct fpga_bits* bits, struct fpga_model* model)
{
int i, rc;
for (i = 0; i < sizeof(s_default_bits)/sizeof(s_default_bits[0]); i++)
set_bitp(bits, &s_default_bits[i]);
rc = write_switches(bits, model);
if (rc) FAIL(rc);
rc = write_iobs(bits, model);
if (rc) FAIL(rc);
rc = write_logic(bits, model);
if (rc) FAIL(rc);
return 0;
fail:
return rc;
}