/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* SHA-1 (FIPS 180-4) implementation in JavaScript (c) Chris Veness 2002-2019 */ /* MIT Licence */ /* www.movable-type.co.uk/scripts/sha1.html */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /** * SHA-1 hash function reference implementation. * * This is an annotated direct implementation of FIPS 180-4, without any optimisations. It is * intended to aid understanding of the algorithm rather than for production use. * * While it could be used where performance is not critical, I would recommend using the ‘Web * Cryptography API’ (developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/digest) for the browser, * or the ‘crypto’ library (nodejs.org/api/crypto.html#crypto_class_hash) in Node.js. * * See csrc.nist.gov/groups/ST/toolkit/secure_hashing.html * csrc.nist.gov/groups/ST/toolkit/examples.html */ class Sha1 { /** * Generates SHA-1 hash of string. * * @param {string} msg - (Unicode) string to be hashed. * @param {Object} [options] * @param {string} [options.msgFormat=string] - Message format: 'string' for JavaScript string * (gets converted to UTF-8 for hashing); 'hex-bytes' for string of hex bytes ('616263' ≡ 'abc') . * @param {string} [options.outFormat=hex] - Output format: 'hex' for string of contiguous * hex bytes; 'hex-w' for grouping hex bytes into groups of (4 byte / 8 character) words. * @returns {string} Hash of msg as hex character string. * * @example * import Sha1 from './sha1.js'; * const hash = Sha1.hash('abc'); // 'a9993e364706816aba3e25717850c26c9cd0d89d' */ static hash(msg, options) { const defaults = { msgFormat: 'string', outFormat: 'hex' }; const opt = Object.assign(defaults, options); switch (opt.msgFormat) { default: // default is to convert string to UTF-8, as SHA only deals with byte-streams case 'string': msg = utf8Encode(msg); break; case 'hex-bytes':msg = hexBytesToString(msg); break; // mostly for running tests } // constants [§4.2.1] const K = [ 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6 ]; // initial hash value [§5.3.1] const H = [ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 ]; // PREPROCESSING [§6.1.1] msg += String.fromCharCode(0x80); // add trailing '1' bit (+ 0's padding) to string [§5.1.1] // convert string msg into 512-bit/16-integer blocks arrays of ints [§5.2.1] const l = msg.length/4 + 2; // length (in 32-bit integers) of msg + ‘1’ + appended length const N = Math.ceil(l/16); // number of 16-integer-blocks required to hold 'l' ints const M = new Array(N); for (let i=0; i<N; i++) { M[i] = new Array(16); for (let j=0; j<16; j++) { // encode 4 chars per integer, big-endian encoding M[i][j] = (msg.charCodeAt(i*64+j*4+0)<<24) | (msg.charCodeAt(i*64+j*4+1)<<16) | (msg.charCodeAt(i*64+j*4+2)<< 8) | (msg.charCodeAt(i*64+j*4+3)<< 0); } // note running off the end of msg is ok 'cos bitwise ops on NaN return 0 } // add length (in bits) into final pair of 32-bit integers (big-endian) [§5.1.1] // note: most significant word would be (len-1)*8 >>> 32, but since JS converts // bitwise-op args to 32 bits, we need to simulate this by arithmetic operators M[N-1][14] = ((msg.length-1)*8) / Math.pow(2, 32); M[N-1][14] = Math.floor(M[N-1][14]); M[N-1][15] = ((msg.length-1)*8) & 0xffffffff; // HASH COMPUTATION [§6.1.2] for (let i=0; i<N; i++) { const W = new Array(80); // 1 - prepare message schedule 'W' for (let t=0; t<16; t++) W[t] = M[i][t]; for (let t=16; t<80; t++) W[t] = Sha1.ROTL(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1); // 2 - initialise five working variables a, b, c, d, e with previous hash value let a = H[0], b = H[1], c = H[2], d = H[3], e = H[4]; // 3 - main loop (use JavaScript '>>> 0' to emulate UInt32 variables) for (let t=0; t<80; t++) { const s = Math.floor(t/20); // seq for blocks of 'f' functions and 'K' constants const T = (Sha1.ROTL(a, 5) + Sha1.f(s, b, c, d) + e + K[s] + W[t]) >>> 0; e = d; d = c; c = Sha1.ROTL(b, 30) >>> 0; b = a; a = T; } // 4 - compute the new intermediate hash value (note 'addition modulo 2^32' – JavaScript // '>>> 0' coerces to unsigned UInt32 which achieves modulo 2^32 addition) H[0] = (H[0]+a) >>> 0; H[1] = (H[1]+b) >>> 0; H[2] = (H[2]+c) >>> 0; H[3] = (H[3]+d) >>> 0; H[4] = (H[4]+e) >>> 0; } // convert H0..H4 to hex strings (with leading zeros) for (let h=0; h<H.length; h++) H[h] = ('00000000'+H[h].toString(16)).slice(-8); // concatenate H0..H4, with separator if required const separator = opt.outFormat=='hex-w' ? ' ' : ''; return H.join(separator); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ function utf8Encode(str) { try { return new TextEncoder().encode(str, 'utf-8').reduce((prev, curr) => prev + String.fromCharCode(curr), ''); } catch (e) { // no TextEncoder available? return unescape(encodeURIComponent(str)); // monsur.hossa.in/2012/07/20/utf-8-in-javascript.html } } function hexBytesToString(hexStr) { // convert string of hex numbers to a string of chars (eg '616263' -> 'abc'). const str = hexStr.replace(' ', ''); // allow space-separated groups return str=='' ? '' : str.match(/.{2}/g).map(byte => String.fromCharCode(parseInt(byte, 16))).join(''); } } /** * Function 'f' [§4.1.1]. * @private */ static f(s, x, y, z) { switch (s) { case 0: return (x & y) ^ (~x & z); // Ch() case 1: return x ^ y ^ z; // Parity() case 2: return (x & y) ^ (x & z) ^ (y & z); // Maj() case 3: return x ^ y ^ z; // Parity() } } /** * Rotates left (circular left shift) value x by n positions [§3.2.5]. * @private */ static ROTL(x, n) { return (x<<n) | (x>>>(32-n)); } } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ // export default Sha1;