
Abstract

1 Introduction

1.1 The frame problem

The frame problem [MH69] was identified and described at least as early as 1969 by McCarthy
and Hayes, in the context of Artificial Intelligence (AI). The initial description of the frame
problem is the following:

“In proving that one person could get into conversation with another, we were
obliged to add the hypothesis that if a person has a telephone he still has it after
looking up a number in the telephone book. If we had a number of actions to be
performed in sequence we would have quite a number of conditions to write down
that certain actions do not change the values of certain fluents. In fact, with n
actions and m fluents we might have to write down mn such conditions.”

Unsurprisingly, the frame problem manifests itself in the realm of formal software specifi-
cation and deductive verification as well [BMR93]. Deductive verification methods consist in
producing formal correctness proofs, by first generating a set of formal mathematical proof
obligations from the program and its specification, and by subsequently discharging these.
Proof obligations can sometimes be discharged automatically by using static analysis and
decision procedures, but often they require the use of an interactive prover. Reducing the
number of proof obligations in a verification hence becomes an essential task.

A large part of a proof consists in proving that a global invariant is preserved, despite the
state changes that a program makes as it executes. A number of proof obligations deal with
those parts of the state that actually have been changed. Another set of proof obligations
arise from dealing with the part of the state that does not change. These may be particularly
tedious to handle because it should be “evident” that the invariant holds for this part of the
state. As a consequence, several specification formalisms offer the possibility of specifying
what is changed and what does not change. These properties are called frame properties.

Frame properties help reducing the number of proof obligations. However, specifying
frame properties might not seem dramatic on small examples, but in real-world examples
this quickly escalates, leading to the necessity of specifying a plethora of conditions.Writing
such conditions is necessary but also notoriously repetitive and tedious. As Kogtenkov et
al. [KMV15] so eloquently puts it:

“It is hard enough to convince programmers to state what their program does;
forcing them in addition to specify all that it does not do may be a tough sell.”

The tedious, undeserved, manual effort entailed by the specification and verification of
frame properties is a manifestation of the frame problem. Though certain conventions and
approaches, such as the implicit frames approach, for specifying frame properties can alleviate
the manual effort imposed, some manifestation of the frame problem will be visible to some
extent in the context of any specification language and verification method.

The article proposes a solution to the frame problem based on fully-automatic, static
program analyses for inferring the preservation of program invariants. More specifically, we

1

target the automatic identification of properties that depend only on an input subset that is
disjoint from an operation’s frame, i.e. the state subset it modifies.

1.2 Methodology

To this end, we propose a solution based on static analysis which does not require any ad-
ditional frame annotations. By detecting the subset on which a property depends and by
uncovering the part that is not modified by an operation, as shown in Figure 1, we can au-
tomatically discharge proof obligations related to unmodified parts. We employ two different
static analyses for this goal.

Dependency Obs

  = Obs

 
Correlation f

 ?
?

 = ?
?

Invariant Obs

  ⇒ Obs

f
 

Figure 1: Frame Problem and Solution Strategy

The first analysis of our two-step strategy is a dependency analysis, which detects the
input subset δ on which the outcome of an operation or of a logical property L relies. This
subset is represented by the grey rectangle with vertical lines in Figure ??. The second is a
correlation analysis, meant to detect the subset ξ modified by an operation O, illustrated by
the orange rectangles with inclined lines in Figure ??. By employing these two static analyses,
thus detecting δ and ξ automatically, and by subsequently reasoning based on their combined
results, we can infer the preservation of the property L for the post-state of O.

1.3 Application context: Formal verification of systems software

1.4 Organisation of the article

2 The SMART functional specification language

3 Dependency analysis
The dependency analysis delimits the input subset on which the output depends, in the
context of an operation with a compound input. We define dependency as the observed part
of a structured domain and strive to obtain type-sensitive results, distinguishing between the
subelements of arrays and algebraic data types and capturing the dependency specific to each.
The targeted results are meant to mirror – in terms of dependency – the layered structure
of compound data types. Furthermore, the dependency analysis must work with conservative
approximations and it must guarantee that what is marked as not needed is definitely not
needed, i.e. it is irrelevant for the obtained output.

2

In the classification of Hind [Hin01], our dependency analysis is a flow-sensitive, field-
sensitive, interprocedural analysis that handles associative arrays, structures and variant data
types. Specific dependency results are computed for each of the possible execution scenarios,
i.e. for each exit label. Thus, our analysis also shows a form of path-sensitivity [Hin01].
However, we favour the term label-sensitivity to describe this characteristic, as it seems more
appropriate applied to our case and the language we are working with.

Our dependency analysis targets complex transition systems in general, and operating
systems and microkernels in particular. These are characterized by states defined by complex
compound data structures and by transitions, i.e. state changes, that map an input state
to an output state. Automatically proving the preservation of invariants concerning only
subelements of the state, i.e. fields, array cells, etc., that have not been altered by a transition
in the system would considerably diminish the number of proof obligations. The first step
towards achieving this goal consists in automatically detecting dependency summaries and
the minimum relevant input information for producing certain outputs.

As mentioned, our analysis targets fine-grained dependency summaries for arrays, struc-
tures and variants, expressed at the level of their subelements. For variants, besides capturing
the specific dependency on each constructor and its arguments, we argue that additional, rel-
evant information can be computed, regarding the subset of possible constructors at a given
program point. This is not dependency information per se but it enriches the footprint of a
predicate with useful information. Together with the dependency information, this additional
information about constructors is meant to answer the same question, namely, what fragments
of the input influence the output, from a different, albeit related point of view. Therefore,
we are simultaneously performing a possible-constructors analysis. This has an impact on the
defined abstract dependency type, making it more complex, as we will see in the following
section. The possible-constructors analysis could be performed separately, as a stand-alone
analysis. By performing the two analyses simultaneously, we lose some of the precision that
would be attained if the two were performed separately, but we reduce overhead and present
relevant information in a unified manner.

Designing the analysis as a tool to be used in the context of interactive program verifi-
cation, on both code and specifications, has led to specific traits. One of them concerns the
treatment of arrays. In contrast to dependence and liveness analyses used for code optimiza-
tions [GS90], which require precision for every array cell, we compute dependency information
referring to all cells of the array or to all but one cell, for which an exceptional dependency is
computed. In practice, a considerable number of relevant properties and operations involving
arrays fall into this spectrum.

3.1 Targeted Dependency Information

We briefly present two examples of αSmil predicates thread and start_address, manipulating
structures, variants and arrays and describe the dependency information that we are targeting.
Both predicates manipulate inputs of type process, and handle values of type thread and
memory_region.

The first predicate, thread, having the control flow graph shown in Figure 5 and whose
implementation is shown in Figure 4, receives a process p and an index i as inputs. It reads
the i-th element in the threads array of the input process p. If this element is active, then
the predicate exits with the label true and outputs the corresponding thread ti . Otherwise,
it exits with the label None and no output is generated.

3

type memory_region = {
// Star t address
s t a r t : i n t ;
// Region length
l ength : i n t

}

type thread = {
// I d e n t i f i e r
id : i n t ;
// Current s t a t e
c r t_sta t e : s t a t e ;
// Stack
stack : memory_region

}

Figure 2: Example Data Types – Thread and Memory Region

type option<A> =
| None
| Some (A a)

type proce s s = {
// Array o f a s s o c i a t ed threads
threads : array<option<thread>>;
// In t e r na l id
pid : i n t ;
// Current ly running thread
crt_thread : i n t ;
// Address space
adr_space : address_space

}

Figure 3: Input Type – Process

p r ed i c a t e thread (proce s s p , i n t i)
−> [true : thread t i | None | oob]
{{ array<option<thread>> th , option<thread> t i o }} {

th := p . threads : [t rue −> 1] ;
t i o := th [i] : [t rue −> 2 , f a l s e −> 5] ;
switch (t i o) as [| t i] : [None −> 4 , Some −> 3] ;
[t rue] ;
[None] ;
[oob]

}

Figure 4: Predicate thread – Implementation

Our dependency analysis should be able to distinguish between the different exit labels of
the predicate. For the label true for instance, it should detect that only the field threads is read
by the predicate, while all others are irrelevant to the result. Furthermore, it should detect
that for the threads array of the input p only the i-th element is inspected. Additionally, since
we are considering the label true, the i-th element is necessarily an active thread, indicated by
the constructor Some. The other constructor, None, is impossible for this execution scenario.
On the contrary, for the exit label None, the constructor Some is impossible. For the exit label
oob, nothing but the index i and the “support” or “length” of the associated threads array

4

th := p.threads

tio := th[i]

switch(tio) as [| ti] oob

true None

true

true false

Some None

Figure 5: Gthread – Control Flow Graph of Predicate thread

Exit label true:

adr_space

crt_thread

pid

process p

threads

Exit label None:

adr_space

crt_thread

pid

process p

threads

option<thread>:

Some(thread t)

None

Read/Needed

Irrelevant/Not Needed

Figure 6: Targeted Dependency Results for Predicate thread

is read. The targeted dependency results for the predicate thread are depicted in Figure 6.
The second predicate, start_address, whose control flow graph is shown in Figure 7,

receives a process p and an index j as inputs and finds the start address of the stack cor-
responding to an active thread. It makes a call to the predicate thread, thus reading the
j-th element of the threads array of its input process. If this is an active element, it further
accesses the field stack, from which it only reads the start address start. Otherwise, if the
element is inactive, the predicate forwards the exit label None of the called predicate thread
and generates no output. When given an invalid index i, the predicate exits with label oob.
The predicate’s implementation is shown in Figure 8.

The dependency information for this predicate should capture the fact that on the true
execution scenario, only the field start of the input’s j-th associated thread is read. Fur-
thermore, the only possible constructor on this execution path is the Some constructor. On
the contrary, for the None execution scenario the only possible constructor is the None con-
structor. The targeted dependency results for the start_address predicate are depicted in
Figure 9. We remark that for the oob execution scenario, only the “support” or “length” of

5

thread(p, j)[true: tj | None | oob]

sj := tj.stack None

adr := sj.start

true

error

true
None

true

true

oob

Figure 7: Gstart_address – Control Flow Graph of Predicate start_address

p r ed i c a t e s tar t_addres s (p roce s s p , i n t j)
−> [true : i n t adr | None]
{{ thread t j , memory_region s j }} {

thread (p , j) [t rue : t j | None | oob] : [t rue −> 1 ,
None −> 4 , oob −> 5] ;
s j := t j . s tack : [t rue −> 2] ;
adr := s j . s t a r t : [t rue −> 3] ;
[t rue] ;
[None] ;
[e r r o r]

}

Figure 8: Predicate start_address – Implementation

6

the threads array is read.

Exit label true:

adr_space

crt_thread

pid

process p

threads

id
crt_state

stack

thread tj
start

stack stj
length

Exit label None:

adr_space

crt_thread

pid

threads

process p

option<thread>:

Some(thread t)

None

Read/Needed

Irrelevant/Not Needed

Figure 9: Targeted Dependency Results for Predicate start_address

3.2 The dependency abstract domain

The first step towards inferring expressive, type-sensitive results that capture the dependency
specific to each subelement of an algebraic data type or an associative array, is the definition
of an abstract dependency domain D, that mimics the structure of such data types. The
dependency domain δ ∈ D, shown below, is defined inductively from the three atomic cases
— >, � and ⊥ — and mirrors the structure of the concrete types.

Definition 1. Dependency Domain δ ∈ D.

δ := | > Everything – atomic case (i)
| � Nothing – atomic case (ii)
| ⊥ Impossible – atomic case (iii)
| {f1 7→ δ1; . . . ; fn 7→ δn} f1, . . . , fn fields (iv)
| [C1 7→ δ1; . . . ;Cm 7→ δm] C1, . . . , Cm constructors (v)
| 〈δ〉 (vi)
| 〈δdef . i : δexc〉 i array index (vii)

As reflected by the above definition, the dependency for atomic types is expressed in terms of
the domain’s atomic cases: > (least precise), denoting that everything is needed and �, de-
noting that nothing is needed. The third atomic case ⊥, denoting impossible, is introduced for
the possible constructors analysis performed simultaneously, and is further explained below.

The dependency of a structure (iv) describes the dependency on each of its fields. For in-
stance, revisiting our thread example from Section 3.1, we could express an over-approximation
of the dependency information depicted for the process p in Figure 6 using the following de-
pendency:

{threads 7→ >; pid 7→ �; crt_thread 7→ �; adr_space 7→ �}.

This captures the fact that all fields except the threads field are irrelevant, i.e. they are not
read and nothing in their contents is needed. The dependency for the threads field is an

7

over-approximation and expresses the fact that it is entirely necessary, i.e. everything in its
value is needed for the result.

For arrays we distinguish between two cases, namely arrays with a general dependency
applying to all of the cells given by (vi) and arrays with a general dependency applying to all
but one exceptional cell, for which a specific dependency is known given by (vii). For instance,
for the threads field of the previous example, the following dependency:

〈� . i : >〉

would be a less coarse approximation, capturing the fact that only the i-th element of the
associated threads array is needed, while all others are irrelevant.

For variants (v), the dependency is expressed in terms of the dependencies of their con-
structors, expressed in turn in terms of their arguments’ dependencies. Thus, a constructor
having a dependency mapped to � is one for which nothing but the tag has been read, i.e.
its arguments, if any, are irrelevant for the execution. For instance, for the i-th element of
the threads array of our previous example, the following dependency:

[Some 7→ >; None 7→ �]

would be a more precise approximation, when considering the exit label true. It is still an
over-approximation as it expresses that both constructors are possible. The argument of the
Some constructor is entirely read, while for None only the tag is read.

For variants, we want to take a step further and to also include the information that certain
constructors cannot occur for certain execution paths. Impossible, the third atomic case — ⊥
— is introduced for this purpose. As mentioned previously in Section ??, in order to obtain
this additional information, we perform a “possible-constructors” analysis simultaneously,
which computes for each execution scenario, the subset of possible constructors for a given
value, at a given program point. All constructors that cannot occur on a given execution path
are marked as being ⊥. In contrast, constructors for which only the tag is read are marked
as �. The difference between ⊥ and � can be illustrated by considering a polymorphic
option type option<A>, having two constructors, None and Some(A val), respectively, and
a Boolean predicate that pattern matches on an input of this type and returns false in the
case of None and true in the case of Some, unconditioned by the value val of its argument.
For the true execution scenario, the dependency on the Some constructor would be �. The
tag is read and it is decisive for the outcome, but the value of its argument val is completely
irrelevant. The dependency on the None constructor however would be ⊥: the predicate
can exit with label true if and only if the input matches against the Some constructor. By
distinguishing between these two cases we can not only distinguish the input’s subelements
that have a direct impact on an operation’s output, but additionally, we can also obtain a
more detailed footprint that highlights the influence exerted by the input’s “shape” on the
operation’s outcome.

For instance, for the i-th element of the threads array of our previous example, a de-
pendency mapping the constructor None to ⊥ would be a more precise approximation, when
considering the label true. Taking into account all the discussed values, we can express the
dependency depicted in Figure 6 for the label true as follows:

8


threads 7→ 〈� . i : [Some 7→ >; None 7→ ⊥]〉
pid 7→ �
crt_thread 7→ �
adr_space 7→ �

 .

We remark that >, � and ⊥ can apply to any type. For instance, > can be seen as a
placeholder for data that is needed in its entirety. Structure, array or variant dependencies
whose subelements are all entirely needed and thus, uniformly mapped to >, are transformed
to >. The ⊥ dependency is a placeholder for data that cannot occur on a certain execution
scenario. A whole variant value is impossible if all its constructors are mapped to ⊥. A whole
structure or array is impossible if any of its subelements is impossible.

The ⊥ atomic value is the lower bound of our domain and hence, the most precise value.
The final abstract dependency is a closure of all these combined recursively. To give an
intuition of the shape of our dependency lattice, we illustrate below in Figure 10 the Hasse
diagram of the order relation between pairs of atomic dependency values. Intuitively, if the
two analyses would be performed separately, the upper “diamond” shape would correspond
to the dependency analysis, and the lower one to the possible-constructors analysis. The �
element would be the lower bound for the dependency domain and the upper bound for the
possible-constructors domain. By performing them simultaneously, ⊥ becomes the domain’s
lower bound.

(>,>)

(>,�) (�,>)

(�,�)

(⊥,�) (�,⊥)

(⊥,⊥)

(>,⊥) (⊥,>)

Figure 10: Order Relation on Pairs of Atomic Dependencies

3.3 Dependency flow equations

The intraprocedural dependency analysis keeps dependency information at each point of the
control flow graph, for each input, output and local variables.

Definition 2. Intraprocedural Dependency Domain ∆ ∈ D . The intraprocedural dependency
domain D is defined as

∆ 3 D = V → D

An element of this domain is a mapping from variables to dependencies.

Our dependency analysis is a backward data-flow analysis. For each exit label, it traverses
the control flow graph starting with its corresponding exit node and it marks all other exit
points as Unreachable, since exit labels are mutually exclusive. The intraprocedural domain
for the currently analysed label is initialized with its associated output variables mapped to >.
Thereby, the analysis starts by making a conservative approximation and by considering that
all the input has been observed and the output depends on it entirely. Typically, dependence

9

analyses are forward analyses. However, given our goal to express label-specific dependencies
as input-output relations and taking into consideration the characteristics of the αSmil lan-
guage, choosing to design our analysis as a backward data-flow analysis seemed a pertinent
choice. In αSmil, outputs are associated to a particular exit label and they are generated if
and only if the predicate exits with that particular label. By traversing the control flow graph
backwards, we can use this information and consider, starting with the initialisation phase,
only the outputs that are relevant for the analysed exit label.

After the initialisation, the analysis then traverses the control flow graph and gradually
refines the dependencies until a fixed point is reached. Table ?? summarizes the represen-
tation and general equation of the statements. For each statement, the presented data-flow
equation operates on the intraprocedural domains of the statement’s successor nodes. The
intraprocedural domain at the entry point of the node is obtained by joining the contributions
of each outgoing edge as shown in Figure 11.

statement

∆in = JsKλ1(∆λ1)∨∆ . . .∨∆JsKλn(∆λn)
JsKλi(∆i) : (∆i \ gens,λi

)⊕∆ δs,λi

δs,λi
contribution of s on λi

δs,λ1
∆λ1

. . .
δs,λn

∆λn

(∆λ1 \ gens,λ1) ⊕∆δs,λ1 (∆λn \ gens,λn
) ⊕∆δs,λn

Figure 11: Computation of the Intraprocedural Domain at a Node’s Entry Point

Table 1 presents the transfer functions for statements which are not type-specific. For
equality tests (1) both of the inputs e1, e2 are completely read, whether the test returns true or
false. The transfer functions therefore, reduce the domain of the corresponding successor node
with a domain consisting of e1 and e2 both mapped to >. In the case of assignment (2), the
dependency of the written output variable o is forgotten from the successor’s intraprocedural
domain, thus being mapped to � and forwarded to the input variable e. The transfer function
for the nop operation (3) is simply the identity.

Statement JsKλi(∆)

Equality test (1)
Je1 = e2Ktrue(∆) = ∆ ⊕∆ dep where

Je1 = e2Kfalse(∆) = ∆ ⊕∆ dep dep =
{
e1 7→ >
e2 7→ >

}

Assignment (2) Jo := eKtrue(∆) = (∆ \ o) ⊕∆ {e 7→ ∆(o)}

No Operation (3) JnopKtrue(∆) = ∆

Table 1: Generic Statements – Data-Flow Equations

The data-flow equations given in Table 2 correspond to structure-related statements. For

10

the equations (4), (5), (6) and (7) we assume that the variable r is of type struct{f1 : τ, . . . , fn :
τ} for some fields fi, 1 ≤ i ≤ n. The equation (4) refers to the creation of a structure: each
input ei is read as much as the corresponding field fi of the structure is read. The destruc-
turing of a structure is handled in (5): each field fi is needed as much as the corresponding
variable oi is. When accessing the i-th field of a structure r (6), only the field fi is read, and
only as much as the access’ result o itself. The equation (7) treats field updates: the variable
ei is read as much as the field fi is. The structure r is read as much as all the fields other
than fi are read in r′. Finally, the equations given in (8) handle partial structure equality
tests, and the transfer functions are the same for the labels true or false: for both compared
structures r′ and r′′, all the fields in the given set f1, . . . , fk are completely read, and only
those.

Statement JsKλi(∆)

Create (4) Jr := {e1, . . . , en}Ktrue(∆) = (∆ \ r) ⊕∆
⊕

1≤i≤n
{ei 7→ ∆(r).fi}

Destructure (5) J{o1, . . . , on} := rKtrue(∆) = (∆ \ {oi| oi ∈ ō}) ⊕∆ {r 7→ {f1 7→ ∆(o1); . . . ; fn 7→ ∆(on)}}

Access field (6) Jo := r.fiKtrue(∆) = (∆ \ o) ⊕∆ {r 7→ {f1 7→ �; . . . ; fi 7→ ∆(o); . . . ; fn 7→ �}}

Update field (7) Jr′ := {r with fi = e}Ktrue(∆) = (∆ \ r′) ⊕∆

{
ei 7→ ∆(r′).fi
r 7→ {f1 7→ δ1; . . . ; fn 7→ δn}

}

where δj =
{

∆(r′).fj if j 6= i
� otherwise

Equality (8)

Jr′ = 〈f1, . . . , fk〉r′′Ktrue(∆) = ∆ ⊕∆ d where d =
{
r′ 7→ {f1 7→ δ1; . . . ; fn 7→ δn}
r′′ 7→ {f1 7→ δ1; . . . ; fn 7→ δn}

}

Jr′ = 〈f1, . . . , fk〉r′′Kfalse(∆) = ∆ ⊕∆ d and δi =
{
> if fi ∈ {f1, . . . , fk}
� otherwise

Table 2: Structure-Related Statements – Data-Flow Equations

3.4 Intraprocedural Dependency Analysis Illustrated

To better illustrate our analysis at an intraprocedural level, we exemplify the mechanism
behind it, step by step, on the predicate thread, discussed in Section 3.1. We consider the
true execution scenario, apply our dependency analysis and compare the actual obtained
results with the targeted ones depicted in Figure 6.

Since a predicate can only exit with one label at a time and we are considering the true
label, we can map the nodes None and oob to Unreachable, as shown in Figure 12. This is
an advantage of backwards analyses. For true, we make a pessimistic assumption and map
the output ti to >, considering that control on the output is external and hence, out of our
reach, and that ti will be entirely needed by a potential caller. Going further up the control
flow graph, we analyse the variant switch.

In order to compute the dependency for the node corresponding to the variant switch,
we apply the data-flow equation, given by (10) in Table ??. Since we are analysing the true
case, we know that all other constructors (only the constructor None in this case) are locally

11

th := p.threads

tio := th[i]

switch(tio) as [| ti] oob

true None

true

true false

Some None
Unreachable

Unreachableti 7→ >

Figure 12: Analysing Predicate thread – Initialisation

impossible. Thus, we map it to ⊥. We continue by forgetting the dependency information
we knew about the output ti . Since its value is needed only in as much as the result of the
switch on the corresponding edge is needed, we forward it to the part corresponding to the
Some constructor. This is summarized below:

. . . ⊕⊕ . . .⊥ ⊥

C1 CSome Cn

tio =

ti =

Jswitch(v) as [o1| . . . |on]Kλi(∆) = (∆ \ oi)⊕ {v 7→ depi}
where
depi = [C1 7→ ⊥; . . . ; Ci 7→ ∆(oi); . . . ; Cn 7→ ⊥]

Figure 13: Applying the Variant Switch Equation

Taking all this into account, for the node corresponding to the variant switch, we obtain
the dependency shown in Figure 14. For the output ti , we depend entirely on the Some
constructor of the node’s input variant tio, while the constructor None is impossible.

Making a step further up the graph, we access the cell i of the array th and apply the
equation (12) given in Table ??. We begin by forgetting the dependency for the output tio,
since this is written. Since we only access the element i, we map all other cells to Nothing, i.e.
�. To the dependency corresponding to the i-th cell, we forward the dependency we knew
about tio, since we depend on it to the extent to which the result of the access is needed.

We thus obtain a dependency stating that we depend only on the i-th cell of the array
th, for which only the constructor Some is possible and entirely needed. The cell’s index i is
entirely needed as well. The applied equation is shown in Figure 15 (since i is an input, we
use the first case of the equation) and the obtained results are shown in Figure 16.

As a last step, we access the field threads of the input process p and apply the equation
(6) given in Table 2 and illustrated in Figure 17. As before, we forget the information for th,
the access result. We map all other fields to � and we forward the dependency of the variable
th to the dependency part of the field threads.

12

th := p.threads

tio := th[i]

switch(tio) as [| ti] oob

true None

true

true false

Some None
Unreachable

Unreachable

tio 7→ [Some 7→ >; None 7→ ⊥]

ti 7→ >

Figure 14: Analysing Predicate thread – Variant Switch

⊕�⊕� . . . ⊕⊕ . . . ⊕�⊕�
1 i n

th =

tio =

Jo := a[i]Ktrue(∆) =


(∆ \ o) ⊕

{
i 7→ >
a 7→ 〈� . i : ∆(o)〉

}
when i ∈ I

(∆ \ o) ⊕
{
i 7→ >
a 7→ 〈∆(o) ∨ �〉

}
when i /∈ I

Figure 15: Applying the Array Access Equation

We thus obtain the dependency result shown in Figure 18. This states that for the label
true, the output ti depends only on the i-th cell of the field threads of the input process
p, for which it depends entirely on the Some constructor. Before returning the predicate’s
final results, the analysis filters out any dependency information referring to local variables
and verifies that the invariant imposed on dependency information related to arrays holds.
Since the results refer only to the inputs p and i and the index of the exceptional computed
dependency is an input, the invariant holds and the final result can be retrieved. The final
dependency results obtained for the thread predicate on the exit label true are identical to the
ones that we were targeting and that were depicted in Figure 6. For readability considerations,
for structures such as the input process p, we omit dependencies on fields mapped to �. We
maintain this convention throughout the rest of this chapter, and thus any field of a structure
that is omitted from a dependency summary should be interpreted as being mapped to �,
i.e. nothing.

13

th := p.threads

tio := th[i]

switch(tio) as [| ti] oob

true None

true

true false

Some None
Unreachable

Unreachable

th 7→ 〈� . i: [Some 7→ >; None 7→ ⊥] 〉
i 7→ >

tio 7→ [Some 7→ >; None 7→ ⊥]

ti 7→ >

Figure 16: Analysing Predicate thread – Array Access

f1 = ⊕�⊕� f2 = ⊕�⊕�

fthreads = ⊕⊕

fn−1 = ⊕�⊕� fn = ⊕�⊕�

p =

th =

Jo := r.fiKtrue(∆) = (∆ \ o) ⊕ {s 7→ {f1 7→ �; . . . ; fi 7→ ∆(o); . . . ; fn 7→ �}}

Figure 17: Applying the Field Access Equation

3.5 An inter-procedural extension

4 Correlation analysis

4.1 Introductory example

4.2 Correlations as partial equivalence relations

4.3 Correlation analysis

5 Experimental evaluation

6 Related work

7 Conclusions

References
[BMR93] Alexander Borgida, John Mylopoulos, and Raymond Reiter. "... And nothing

else changes": The frame problem in procedure specifications. In Proceedings of

14

th := p.threads

tio := th[i]

switch(tio) as [| ti] oob

true None

true

true false

Some None
Unreachable

Unreachable

p 7→ { threads 7→ 〈� . i: [Some 7→ >; None 7→ ⊥]〉}
i 7→ >

th 7→ 〈� . i: [Some 7→ >; None 7→ ⊥] 〉
i 7→ >

tio 7→ [Some 7→ >; None 7→ ⊥]

ti 7→ >

Figure 18: Analysing Predicate thread – Field Access

the 15th International Conference on Software Engineering, Baltimore, Maryland,
USA, May 17-21, 1993., pages 303–314, 1993.

[GS90] Thomas R. Gross and Peter Steenkiste. Structured dataflow analysis for arrays and
its use in an optimizing compiler. Softw., Pract. Exper., 20(2):133–155, 1990.

[Hin01] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceed-
ings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For
Software Tools and Engineering, PASTE’01, Snowbird, Utah, USA, June 18-19,
2001, pages 54–61, 2001.

[KMV15] Alexander Kogtenkov, Bertrand Meyer, and Sergey Velder. Alias calculus, change
calculus and frame inference. Sci. Comput. Program., 97(P1):163–172, January
2015.

[MH69] John McCarthy and Patrick J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In Machine Intelligence. Edinburgh University Press,
1969.

15

