2261 lines
90 KiB
TeX
2261 lines
90 KiB
TeX
\documentclass[11pt]{article}
|
|
|
|
\usepackage{a4wide}
|
|
|
|
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage[scaled=.7]{beramono}
|
|
\usepackage{lmodern}
|
|
\usepackage[utf8]{inputenc}
|
|
%\usepackage[english]{babel}
|
|
\usepackage{amsmath}
|
|
\usepackage{amssymb}
|
|
\usepackage{amsfonts}
|
|
\usepackage{amsthm}
|
|
\usepackage{dsfont}
|
|
\usepackage{mathrsfs}
|
|
\usepackage{ifdraft}
|
|
\usepackage{array,multicol}
|
|
\usepackage{booktabs}
|
|
\usepackage{longtable}
|
|
\usepackage{cancel}
|
|
\usepackage{float}
|
|
\usepackage{stmaryrd}
|
|
\usepackage{colortbl}
|
|
\usepackage{caption}
|
|
\usepackage{mathpartir}
|
|
\usepackage{mathtools}
|
|
\usepackage[final]{listings}
|
|
\usepackage{url}
|
|
%\usepackage{bibunits}% Incompatible with biblatex, see biblatex's documentation for workarounds.
|
|
\usepackage{marvosym} % Note that this exports \Cross, incompatible with package bbding.
|
|
% % Circumvented by code around the \usepackage{bdding} below.
|
|
\usepackage{forest}
|
|
\usepackage{tikz,datetime}
|
|
\usetikzlibrary{decorations.pathreplacing,trees,calc,fit,positioning,chains,arrows,arrows.meta,automata,shapes,graphs,shapes.geometric,shapes.symbols,
|
|
decorations.markings,patterns,matrix,decorations.pathmorphing,mindmap,math}
|
|
%,triangle-fit,decorations.growingwave,oni-squiggly}
|
|
\usepackage{pgf}
|
|
\usepackage{pgfplots}
|
|
\usepackage{graphicx}
|
|
\usepackage{subfigure}
|
|
\usepackage{alltt}
|
|
\usepackage{mathrsfs}
|
|
\usepackage{wrapfig}
|
|
\usepackage{xcolor}
|
|
\usepackage{dsfont}
|
|
\usepackage{amsbsy}
|
|
\usepackage{savesym}
|
|
% Circumvent incompatibility between marvosym and bdding, which both define \Cross.
|
|
% See https://groups.google.com/forum/#!topic/comp.text.tex/LSETDAIaJug
|
|
\savesymbol{Cross}% Save original \Cross as \origCross.
|
|
\usepackage{bbding}
|
|
\restoresymbol{bb}{Cross}% Restore original \Cross from marvosym + rename bbding's \Cross to \bbCross.
|
|
\usepackage{relsize}
|
|
\usepackage{wasysym}
|
|
%\usepackage{growingwave}
|
|
\pgfdeclarelayer{background}
|
|
\pgfdeclarelayer{foreground}
|
|
\pgfsetlayers{background,main,foreground}
|
|
\usepackage{epigraph}
|
|
%\usepackage{oni-trees}
|
|
%\usepackage{oni-tree-defaults}
|
|
%\usepackage[backend=bibtex,style=authoryear,natbib=true,maxbibnames=99]{biblatex}
|
|
%% User the bibtex backend with the authoryear citation style (which
|
|
%% resembles APA)
|
|
\usepackage{tikz,datetime}
|
|
\usetikzlibrary{decorations.pathreplacing,trees,calc,fit,positioning,chains,arrows,arrows.meta,automata,shapes,graphs,shapes.geometric,shapes.symbols,
|
|
decorations.markings,patterns,matrix,decorations.pathmorphing,mindmap,math}
|
|
%,triangle-fit,decorations.growingwave,oni-squiggly}
|
|
\usepackage{pgf}
|
|
\usepackage{pgfplots}
|
|
\usepackage{graphicx}
|
|
\usepackage{subfigure}
|
|
|
|
%%%%%%%%%%
|
|
%% from main.tex
|
|
|
|
|
|
|
|
|
|
\newtheorem{definition}{Definition}
|
|
|
|
\newcommand{\snumber}[1]{\textrm{{\scriptsize(#1)}}}
|
|
|
|
%%%%%
|
|
%%%%% From Chapter on SSMART
|
|
\newcommand{\disp}[1]{\lstinline&}
|
|
|
|
%% True label
|
|
\def\lbtrue{\textsf{true}}
|
|
%% False Label
|
|
\def\lbfalse{\textsf{false}}
|
|
|
|
|
|
%Set of structure field identifiers
|
|
\def\fset{\ensuremath{\mathcal{F}}}
|
|
%Set of variant constructors identifiers
|
|
\def\cset{\ensuremath{\mathcal{C}}}
|
|
%Set of variable identifiers
|
|
\def\vset{\ensuremath{\mathcal{V}}}
|
|
%Set of writeable variable identifiers
|
|
\def\wrvset{\ensuremath{\mathcal{V}^{+}}}
|
|
%Set of read-only variable identifiers
|
|
\def\rovset{\ensuremath{\mathcal{V}^{-}}}
|
|
%Universe of type identifiers
|
|
\def\utyp{\ensuremath{\mathbb{T}}}
|
|
%Set of base type identifiers
|
|
\def\basetyp{\ensuremath{T_0}}
|
|
%Universe of semantic values
|
|
\def\uval{\ensuremath{\mathbb{D}}}
|
|
%Typing environment
|
|
\def\tenv{\ensuremath{\Gamma}}
|
|
%Valuation
|
|
\def\env{\ensuremath{E}}
|
|
|
|
%% Types
|
|
\def\primtyp{\tau}
|
|
|
|
%Structure Type
|
|
\newcommand{\plainstype}[6]
|
|
{\ensuremath{\boldsymbol{struct}\{#1_{#2}: #3, \ldots, #4_{#5}: #6 \}}}
|
|
|
|
\newcommand{\plainmiddlestype}[9]
|
|
{\ensuremath{\boldsymbol{struct}\{#1_{#2}: #3, \ldots, #4_{#5}: #6 , \ldots,#7_{#8}: #9\}}}
|
|
|
|
\def\commonstype{\plainstype{f}{1}{\tau}{f}{n}{\tau}}
|
|
\def\commonstypeindex{\plainstype{f}{1}{\tau_1}{f}{n}{\tau_n}}
|
|
\def\commonmiddlestype{\plainmiddlestype{f}{1}{\tau_1}{f}{i}{\tau_i}{f}{n}{\tau_n}}
|
|
|
|
%Variant Type
|
|
\newcommand{\plainvtype}[6]
|
|
{\ensuremath{\boldsymbol{variant}[#1_{#2}: #3 \ver \ldots \ver #4_{#5}: #6]}}
|
|
|
|
\newcommand{\plainmiddlevtype}[9]
|
|
{\ensuremath{\boldsymbol{variant}[#1_{#2}: #3 \ver \ldots \ver #4_{#5}: #6 \ver \ldots \ver #7_{#8}: #9]}}
|
|
|
|
\def\commonvtype{\plainvtype{C}{1}{\tau}{C}{n}{\tau}}
|
|
\def\commonvtypeindex{\plainvtype{C}{1}{\tau_1}{C}{n}{\tau_n}}
|
|
\def\commonmiddlevtype{\plainmiddlevtype{C}{1}{\tau_1}{C}{i}{\tau_i}{C}{n}{\tau_n}}
|
|
|
|
%Array Type
|
|
\newcommand{\plainatype}[2]
|
|
{\ensuremath{\boldsymbol{arr}^{#1} \langle #2 \rangle}}
|
|
|
|
\def\commonatype{\plainatype{\tau}{\tau}}
|
|
\def\commonatypeindex{\plainatype{\tau_i}{\tau}}
|
|
|
|
% Values
|
|
|
|
%Structure Values
|
|
\newcommand{\plainsval}[6]
|
|
{\ensuremath{\{#1_{#2} = #3, \ldots, #4_{#5} = #6\}}}
|
|
|
|
\newcommand{\plainmiddlesval}[9]
|
|
{\ensuremath{\{#1_{#2} = #3, \ldots, #4_{#5} = #6, \ldots, #7_{#8} = #9\}}}
|
|
|
|
\def\commonsval{\plainsval{f}{1}{v_1}{f}{n}{v_n}}
|
|
\def\commonmiddlesval{\plainmiddlesval{f}{1}{v_1}{f}{i}{v_i}{f}{n}{v_n}}
|
|
|
|
%% %Variant Values
|
|
%% \newcommand{\plainvval}[4]
|
|
%% {\ensuremath{#1_{#2}[#3_{#4}] }}
|
|
|
|
%% \newcommand{\plainvvalindex}[1]
|
|
%% {\ensuremath{C_{#1}[v_{#1}]}}
|
|
|
|
%% \def\commonvval{\plainvval{C}{i}{v}{i}}
|
|
|
|
%Array Values
|
|
\def\asup{\mathcal{P}}
|
|
|
|
%% Built-in Statements
|
|
\def\unop{\ensuremath{\boldsymbol{nop}}}
|
|
\newcommand{\plainasgn}[2]{\ensuremath{#1 := #2}}
|
|
\def\commonasgn{\plainasgn{o}{e}}
|
|
\newcommand{\plaineqtest}[2]{\ensuremath{#1 = #2}}
|
|
\def\commoneqtest{\plaineqtest{e_1}{e_2}}
|
|
\newcommand{\recordnew}{r := \{e_1, \ldots, e_n \}}
|
|
\newcommand{\recordall}{\{o_1, \ldots, o_n \} := r}
|
|
\newcommand{\recordset}{r' := \{r\; \boldsymbol{with}\; f_i = e \} }
|
|
\newcommand{\recordget}{o := r.f_i}
|
|
\newcommand{\recordeq}{r' = \langle f_1, \ldots, f_k \rangle r''}
|
|
\newcommand{\varcons}{v := C_p[e]}
|
|
\newcommand{\varswitch}
|
|
{\boldsymbol{switch}(v) \;\boldsymbol{as} \;[o_1 \arrowvert \ldots \arrowvert o_n ]}
|
|
\newcommand{\varpossible}{v \in \{ C_1,\ldots ,C_k \}}
|
|
\newcommand{\arrayget}{o := a[i]}
|
|
\newcommand{\arrayset}{a' := [a \; \boldsymbol{with} \; i = e]}
|
|
|
|
\newcommand{\predcall}
|
|
{p(e_1, \ldots, e_n) \; [\lambda_1: \bar{o}_1 \; \arrowvert \ldots \arrowvert \; \lambda_m: \bar{o}_m]}
|
|
\newcommand{\pcall}
|
|
{
|
|
{p(e_1, \ldots, e_n)\newline
|
|
[\lambda_1: \bar{o}_1 \; \arrowvert \ldots \arrowvert \; \lambda_m: \bar{o}_m]}
|
|
}
|
|
|
|
%% Exit Labels
|
|
|
|
%% True label
|
|
\def\lbtrue{\textsf{true}}
|
|
%% False Label
|
|
\def\lbfalse{\textsf{false}}
|
|
|
|
%labels-outputs maps macros
|
|
\newcommand{\unary}[1]{\left[\begin{array}{ccc}
|
|
\lbtrue &\mapsto \\
|
|
\end{array}
|
|
\right]}
|
|
|
|
\newcommand{\lbinary}[2]{
|
|
\left[\begin{array}{c}
|
|
\lbtrue \mapsto #1\\
|
|
\lbfalse \mapsto #2
|
|
\end{array}\right]
|
|
}
|
|
|
|
\newcommand{\multi}[4]{\left[\begin{array}{ccc}
|
|
\lambda_{#1} &\mapsto & \bar{o}_{1}\\
|
|
\vdots &\ddots &\vdots \\
|
|
\lambda_{#2} &\mapsto & \bar{o}_{#4}
|
|
\end{array}
|
|
\right]}
|
|
|
|
\newcommand{\multiv}[3]{\left[\begin{array}{ccc}
|
|
\lambda_{#1} &\mapsto &o_{1}\\
|
|
\vdots &\ddots &\vdots \\
|
|
\lambda_{#2} &\mapsto &o_{#3}
|
|
\end{array}
|
|
\right]}
|
|
|
|
|
|
|
|
|
|
%%%%%
|
|
%%%%% From Chapter on SMIL
|
|
\def\asmil{\textsf{$\alpha$Smil}}
|
|
|
|
\def\commonvval{\plainvval{C}{i}{v}}
|
|
|
|
%Generic option type
|
|
\def\optiont{\boldsymbol{\small{variant}}
|
|
[\textrm{\disp{Some}} : \boldsymbol{\small{struct}}\{\textrm{\disp{t}} : \textrm{\disp{T}}\} \;
|
|
\arrowvert\;
|
|
\; \textrm{\disp{None}} : \boldsymbol{\small{struct}}\{\}]}
|
|
|
|
%%%%% Chapter 5
|
|
\def\ileq{\dleq_{\intra}}
|
|
%\def\ijoin{\vee_{\intra}}
|
|
\def\ireduce{\oplus_{\intra}}
|
|
\def\uintra{\mathscr{D}}
|
|
|
|
|
|
%% misc macros
|
|
\newcommand{\ver}{\arrowvert \;}
|
|
|
|
%macros tables (chapters 5 and 7)
|
|
%!%!%! Does this impact tables in other chapters?
|
|
%!%!%! If so, we can put it in a \begingroup \endgroup, so that it affects only the desired tables
|
|
\newcommand{\ra}[1]{\renewcommand{\arraystretch}{#1}}
|
|
\colorlet{tableheadcolor}{gray!25} % Table header colour = 25% gray
|
|
\newcommand{\headcol}{\rowcolor{tableheadcolor}} %
|
|
\colorlet{tablerowcolor}{gray!10} % Table row separator colour = 10% gray
|
|
\newcommand{\rowcol}{\rowcolor{tablerowcolor}} %
|
|
\colorlet{tablerowcolor}{gray!10} % Table row separator colour = 10% gray %!%!%! was not in chapter 5.
|
|
|
|
% math operators with subscript-ish
|
|
%Macro big meet
|
|
\makeatletter
|
|
\newlength{\widthofMeet}
|
|
\newlength{\widthofR}
|
|
|
|
\newsavebox{\boxname}
|
|
\newsavebox{\boxnameb}
|
|
\newsavebox{\boxnamec}
|
|
|
|
\def\negphantomdiff#1#2#3{%
|
|
\def\resetstyle{#1}
|
|
\savebox{\boxname}{$#1#2$}%
|
|
\savebox{\boxnameb}{$#1#3$}%
|
|
\hspace{-\wd\boxnameb}\hspace{\wd\boxname}% negative width of just the R (= - whole + wedge)
|
|
}
|
|
\def\withwidthoffirst#1#2#3{%
|
|
\def\resetstyle{#1}
|
|
\savebox{\boxname}{$#1#2$}%
|
|
\savebox{\boxnameb}{$#1#3$}%
|
|
\hspace{\wd\boxnameb}\hspace{-\wd\boxname}%width of just the R (= whole - wedge)
|
|
\usebox{\boxnameb}%
|
|
}
|
|
\def\alignedmathop#1#2{%
|
|
\@ifstar{%
|
|
\centeredmathop{#1}{#2}%
|
|
}{%
|
|
\mathchoice%
|
|
{\negphantomdiff{\displaystyle}{#1}{#2}}% <--- HERE displaystyle
|
|
{\negphantomdiff{\textstyle}{#1}{#2}}% <--- HERE textstyle
|
|
{\negphantomdiff{\scriptstyle}{#1}{#2}}% <--- HERE scriptstyle
|
|
{\negphantomdiff{\scriptscriptstyle}{#1}{#2}}% <--- HERE scriptscriptstyle
|
|
\centeredmathop{#1}{#2}%
|
|
}%
|
|
}
|
|
\def\centeredmathop#1#2{%
|
|
\mathop{%
|
|
\mathchoice%
|
|
{\withwidthoffirst{\displaystyle}{#1}{#2}}% <--- HERE displaystyle
|
|
{\withwidthoffirst{\textstyle}{#1}{#2}}% <--- HERE textstyle
|
|
{\withwidthoffirst{\scriptstyle}{#1}{#2}}% <--- HERE scriptstyle
|
|
{\withwidthoffirst{\scriptscriptstyle}{#1}{#2}}% <--- HERE scriptscriptstyle
|
|
}%
|
|
}
|
|
\makeatother
|
|
|
|
% Needed to appear cleanly in the list of symbols
|
|
\def\intrachapfive{\Delta}
|
|
\def\ijoinchapfive{%
|
|
\alignedmathop{%
|
|
\vee%
|
|
}{%
|
|
\mathchoice%
|
|
{\vee\mkern-4mu\smash{\raisebox{-0.3ex}{$\resetstyle\mathlarger{{}_{\intrachapfive}}$}}}%
|
|
{\vee\mkern-3mu\smash{\raisebox{-0.1ex}{$\resetstyle\mathlarger{{}_{\intrachapfive}}$}}}%
|
|
{\vee\mkern-2.25mu\smash{\raisebox{-0.3ex}{$\resetstyle\mathlarger{{}_{\intrachapfive}}$}}}%
|
|
{\vee\mkern-2.5mu\smash{\raisebox{-0.35ex}{$\resetstyle\mathlarger{{}_{\intrachapfive}}$}}}%
|
|
}%
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
\title{Static analysis for proof obligation elimination in functional
|
|
specifications}
|
|
|
|
\author{Oana Andreescu \and Thomas Jensen \and St\'ephane Lescuyer}
|
|
|
|
\date{\today}
|
|
|
|
\begin{document}
|
|
|
|
\begin{abstract}
|
|
|
|
\end{abstract}
|
|
|
|
|
|
\section{Introduction}
|
|
|
|
\subsection{The frame problem}
|
|
|
|
The frame problem~\cite{mccarthy69} was identified and described at
|
|
least as early as 1969 by McCarthy and Hayes, in the context of
|
|
Artificial Intelligence (AI). The initial description of the
|
|
frame problem is the following:
|
|
|
|
\begin{quotation}
|
|
``In proving that one person could get into conversation with another, we were
|
|
obliged to add the hypothesis that if a person has a telephone he still has it
|
|
after looking up a number in the telephone book. If we had a number of actions
|
|
to be performed in sequence we would have quite a number of conditions to
|
|
write down that certain actions do not change the values of certain
|
|
fluents. In fact, with $n$ actions and $m$ fluents we might have to write down
|
|
$mn$ such conditions.''
|
|
\end{quotation}
|
|
|
|
Unsurprisingly,
|
|
%given its identification in the context of logicist AI,
|
|
the frame problem manifests itself in the realm of formal software
|
|
specification and deductive verification as well~\cite{borgida93}.
|
|
Deductive verification methods consist in producing formal correctness
|
|
proofs, by first generating a set of formal mathematical proof
|
|
obligations from the program and its specification, and by
|
|
subsequently discharging these. Proof
|
|
obligations can sometimes be discharged automatically by using static
|
|
analysis and decision procedures, but often they require the use of
|
|
an interactive prover. Reducing the number of proof obligations in a
|
|
verification hence becomes an essential task.
|
|
|
|
A large part of a proof consists in proving that a global invariant is
|
|
preserved, despite the state changes that a program makes
|
|
as it executes. A number of proof obligations deal with those parts of the
|
|
state that actually have been changed. Another set of proof
|
|
obligations arise from dealing with the part of the state that does
|
|
not change. These may be particularly tedious to handle because it
|
|
should be ``evident'' that the invariant holds for this part of the
|
|
state. As a consequence, several specification formalisms offer the
|
|
possibility of specifying what is changed and what does not
|
|
change. These properties are called \emph{frame properties}.
|
|
|
|
Frame properties help reducing the number of proof
|
|
obligations. However, specifying frame properties might not seem dramatic
|
|
on small examples, but in real-world examples this quickly
|
|
escalates, leading to the necessity of specifying a plethora of
|
|
conditions.Writing such conditions is necessary but also notoriously
|
|
repetitive and tedious. As Kogtenkov et al.~\cite{kogtenkov15}
|
|
so eloquently puts it:
|
|
|
|
\begin{quotation}
|
|
``It is hard enough to convince programmers to state what their program does; forcing
|
|
them in addition to specify all that it does not do may be a tough sell.''
|
|
\end{quotation}
|
|
|
|
The tedious, undeserved, manual effort entailed by the specification and
|
|
verification of frame properties is a manifestation of the frame problem. Though
|
|
certain conventions and approaches, such as the \emph{implicit frames} approach,
|
|
for specifying frame properties can alleviate the manual effort imposed, some
|
|
manifestation of the frame problem will be visible to some extent in the context
|
|
of any specification language and verification method.
|
|
|
|
The article proposes a solution to the frame problem based on
|
|
fully-automatic, static program analyses for inferring the
|
|
preservation of program invariants. More specifically, we target the
|
|
automatic identification of properties that depend only on an input
|
|
subset that is disjoint from an operation's \emph{frame}, i.e. the
|
|
state subset it modifies.
|
|
|
|
\subsection{Methodology}
|
|
|
|
To this end, we propose a solution based on static analysis which does not
|
|
require any additional frame annotations. By detecting the subset
|
|
on which a property depends and by uncovering the part that is not modified by
|
|
an operation, as shown in Figure~\ref{ch1:fig:strategy}, we can automatically
|
|
discharge proof obligations related to unmodified parts. We employ two different
|
|
static analyses for this goal.
|
|
|
|
\begin{figure}[!h]
|
|
%Second Line
|
|
\begin{minipage}[c]{0.1\textwidth}
|
|
\[
|
|
\begin{array}[b]{crcl}
|
|
|
|
\textrm{{Dependency}} &
|
|
Obs
|
|
\left(
|
|
\mathord{%
|
|
\resizebox{\textwidth}{!}{
|
|
\begin{tikzpicture}[ baseline= (current bounding box.center), scale=0.7, auto]
|
|
\filldraw[fill=lightgray!60,pattern = north west lines, pattern color=red, rounded corners] (4.5,-8.5) rectangle (8.5,-5.5);
|
|
\filldraw[fill=lightgray!60] (4.5, -6.5) rectangle (8.5, -6.8);
|
|
\filldraw[fill=lightgray!60,pattern=vertical lines, pattern color=black] (4.5, -6.5) rectangle (8.5, -6.8);
|
|
\end{tikzpicture}%
|
|
}
|
|
}
|
|
\right)
|
|
& = &
|
|
Obs
|
|
\left(
|
|
\mathord{%
|
|
\resizebox{\textwidth}{!}{
|
|
\begin{tikzpicture}[baseline=(current bounding box.center), scale=0.7, auto]
|
|
\filldraw[fill=red!75!black, rounded corners] (12,-12) rectangle (16,-9) ;% draw/fill the box
|
|
\filldraw[pattern = north east lines, pattern color=white, rounded corners] (12,-12) rectangle (16,-9) ;% draw the stripes
|
|
\filldraw[fill=lightgray!40] (12, -10) rectangle (16, -10.3);
|
|
\filldraw[pattern=vertical lines, pattern color=black] (12, -10) rectangle (16, -10.3);
|
|
\end{tikzpicture}%
|
|
}
|
|
}
|
|
\right) \\[1.5em]
|
|
|
|
\textrm{{Correlation}} &
|
|
\textrm{\huge{$f$}}
|
|
\left (
|
|
\mathord{%
|
|
\resizebox{\textwidth}{!}{
|
|
\begin{tikzpicture}[baseline=(current bounding box.center), scale=0.7, auto]
|
|
\filldraw[fill=lightgray!60, rounded corners] (1,-10) rectangle (5,-7)
|
|
node[scale=1.5,rectangle, minimum size = 2] at (3,-7.5) {\Large$?$}
|
|
node[scale=1.5,rectangle, minimum size = 2] at (3, -9) {\Large$?$};
|
|
\filldraw[fill=lightgray!60] (1, -8) rectangle (5, -8.3);
|
|
\filldraw[fill=lightgray!60,pattern=vertical lines, pattern color=black] (1, -8) rectangle (5, -8.3);
|
|
\end{tikzpicture}%
|
|
}
|
|
}
|
|
\right)
|
|
& = &
|
|
\mathord{%
|
|
\resizebox{\textwidth}{!}{
|
|
\begin{tikzpicture}[baseline=(current bounding box.center), scale=0.7, auto]
|
|
\filldraw[fill=darkgray!60, rounded corners] (12,-10) rectangle (16,-7)
|
|
node[scale=1.5,rectangle, minimum size = 2] at (14,-7.5) {\Large$?$}
|
|
node[scale=1.5,rectangle, minimum size = 2] at (14, -9) {\Large$?$};;% draw the box
|
|
\filldraw[fill=lightgray!40] (12, -8) rectangle (16, -8.3);
|
|
\filldraw[fill=lightgray!40,pattern=vertical lines, pattern color=black] (12, -8) rectangle (16, -8.3);
|
|
\end{tikzpicture}%
|
|
}
|
|
} \\[1.5em]
|
|
|
|
\textrm{{Invariant}} &
|
|
Obs
|
|
\left (
|
|
\mathord{%
|
|
\resizebox{\textwidth}{!}{
|
|
\begin{tikzpicture}[baseline=(current bounding box.center), scale=0.7, auto]
|
|
\filldraw[fill=lightgray!40,pattern = north west lines, pattern color=red, rounded corners] (1,-12) rectangle (5,-9);
|
|
\filldraw[fill=lightgray!40] (1, -10) rectangle (5, -10.3);
|
|
\filldraw[fill=lightgray!40,pattern=vertical lines, pattern color=black] (1, -10) rectangle (5, -10.3);
|
|
\end{tikzpicture}%
|
|
}
|
|
}
|
|
\right)
|
|
& \Rightarrow & Obs
|
|
\left (
|
|
\textrm{\huge{$f$}}
|
|
\left(
|
|
\mathord{%
|
|
\resizebox{\textwidth}{!}{
|
|
\begin{tikzpicture}[baseline=(current bounding box.center), scale=0.7, auto]
|
|
\filldraw[fill=lightgray!40,pattern = north west lines, pattern color=red, rounded corners] (12,-12) rectangle (16,-9) ;% draw the box
|
|
\filldraw[fill=lightgray!40] (12, -10) rectangle (16, -10.3);
|
|
\filldraw[fill=lightgray!40,pattern=vertical lines, pattern color=black] (12, -10) rectangle (16, -10.3);
|
|
\end{tikzpicture}%
|
|
}
|
|
}
|
|
\right)
|
|
\right)
|
|
\end{array}
|
|
\]
|
|
\end{minipage}
|
|
\caption{Frame Problem and Solution Strategy}
|
|
\label{ch1:fig:strategy}
|
|
\end{figure}
|
|
|
|
The first analysis of our two-step strategy is a \emph{dependency
|
|
analysis}, which detects the input subset $\delta$ on which the
|
|
outcome of an operation or of a logical property $\mathscr{L}$
|
|
relies. This subset is represented by the grey rectangle with vertical
|
|
lines in Figure~\ref{ch1:fig:frameproblem}. The second is a
|
|
\emph{correlation analysis}, meant to detect the subset $\xi$ modified
|
|
by an operation $\mathscr{O}$, illustrated by the orange
|
|
rectangles with inclined lines in
|
|
Figure~\ref{fig:frameproblem}. By employing these two static
|
|
analyses, thus detecting $\delta$ and $\xi$ automatically, and by
|
|
subsequently reasoning based on their combined results, we can infer
|
|
the preservation of the property $\mathscr{L}$ for the post-state of
|
|
$\mathscr{O}$.
|
|
|
|
\subsection{Application context: Formal verification of systems software}
|
|
|
|
\subsection{Organisation of the article}
|
|
|
|
\section{The SMART functional specification language}
|
|
|
|
\section{Dependency analysis}
|
|
|
|
\input{dependency-macros}
|
|
|
|
The dependency analysis delimits the input subset on which the output
|
|
depends, in the context of an operation with a compound input. We
|
|
define \emph{dependency} as the observed part of a structured domain
|
|
and strive to obtain type-sensitive results, distinguishing between
|
|
the subelements of arrays and algebraic data types and capturing the
|
|
dependency specific to each. The targeted results are meant to mirror
|
|
-- in terms of dependency -- the layered structure of compound data
|
|
types. Furthermore, the \emph{dependency analysis} must work with
|
|
\emph{conservative approximations} and it must guarantee that what is
|
|
marked as not needed is definitely not needed, i.e. it is irrelevant
|
|
for the obtained output.
|
|
|
|
In the classification of Hind~\cite{hind01}, our dependency analysis is a
|
|
\emph{flow-sensitive}, \emph{field-sensitive}, \emph{interprocedural} analysis
|
|
that handles associative arrays, structures and variant data types. Specific
|
|
dependency results are computed for each of the possible execution
|
|
scenarios, i.e. for each exit label. Thus, our analysis also shows a form of
|
|
\emph{path-sensitivity}~\cite{hind01}. However, we favour the term
|
|
\emph{label-sensitivity} to describe this characteristic, as it seems more
|
|
appropriate applied to our case and the language we are working with.
|
|
|
|
Our dependency analysis targets complex transition systems in general, and
|
|
operating systems and microkernels in particular.
|
|
%% Generally, our dependency analysis targets complex transition systems, such as
|
|
%% microkernels and operating systems, for example.
|
|
These are
|
|
characterized by states defined by complex compound data structures and by
|
|
transitions, i.e. state changes, that map an input state to an output state.
|
|
Automatically proving the preservation of invariants concerning only
|
|
subelements of the state, i.e. fields, array cells, etc., that have not been
|
|
altered by a transition in the system would considerably diminish the number of
|
|
proof obligations. The first step towards achieving this goal consists in
|
|
automatically detecting dependency summaries and the minimum relevant input
|
|
information for producing certain outputs.
|
|
|
|
As mentioned, our analysis targets fine-grained dependency summaries for arrays,
|
|
structures and variants, expressed at the level of their subelements. For
|
|
variants, besides capturing the specific dependency on each constructor
|
|
and its arguments, we argue that additional, relevant information can be
|
|
computed, regarding the subset of possible constructors at a given program
|
|
point. This is not dependency information \emph{per se} but it enriches the
|
|
footprint of a predicate with useful information. Together with the dependency
|
|
information, this additional information about constructors is meant to answer
|
|
the same question, namely, what fragments of the input influence the output,
|
|
from a different, albeit related point of view. Therefore, we are
|
|
simultaneously performing a \emph{possible-constructors} analysis. This has an
|
|
impact on the defined abstract dependency type, making it more complex, as we will see in
|
|
the following section. The \emph{possible-constructors} analysis could be
|
|
performed separately, as a stand-alone analysis. By performing the two analyses
|
|
simultaneously, we lose some of the precision that would be attained if the two
|
|
were performed separately, but we reduce overhead and present relevant
|
|
information in a unified manner.
|
|
|
|
Designing the analysis as a tool to be used in the context of
|
|
interactive program verification, on both code and specifications, has
|
|
led to specific traits. One of them concerns the treatment of
|
|
arrays. In contrast to dependence and liveness analyses used for code
|
|
optimizations~\cite{gross90}, which require precision for every
|
|
array cell, we compute dependency information referring to all cells
|
|
of the array or to all but one cell, for which an exceptional
|
|
dependency is computed. In practice, a considerable number of
|
|
relevant properties and operations involving arrays fall into this
|
|
spectrum.
|
|
|
|
|
|
|
|
%% Frequently operations manipulating arrays are concerned only with
|
|
%% one element; others, such as sorting algorithms are concerned and potentially
|
|
%% modify every element. Properties on arrays most often refer to all cells of an
|
|
%% array or to one cell, imposing conditions of the \emph{forall} or \emph{exists}
|
|
%% type. Properties on arrays often address somehow a \emph{uniform} quality
|
|
%% applying to all elements of the array or to ...
|
|
|
|
\subsection{Targeted Dependency Information}\label{sec:intro:example}
|
|
|
|
We briefly present two examples of {\asmil} predicates \disp{thread}
|
|
and \disp{start_address},
|
|
manipulating structures, variants and arrays and describe the dependency
|
|
information that we are targeting.
|
|
Both predicates manipulate inputs of type
|
|
\disp{process}, and handle values of type \disp{thread} and
|
|
\disp{memory_region}.
|
|
|
|
\begin{figure}[hbtp]\centering
|
|
\begin{tabular}{ll}
|
|
\toprule
|
|
\begin{lstlisting}
|
|
type memory_region = {
|
|
// Start address
|
|
start : int;
|
|
// Region length
|
|
length : int
|
|
}
|
|
\end{lstlisting}
|
|
&\begin{lstlisting}
|
|
type thread = {
|
|
// Identifier
|
|
id : int;
|
|
// Current state
|
|
crt_state : state;
|
|
// Stack
|
|
stack : memory_region
|
|
}
|
|
\end{lstlisting} \\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Example Data Types -- Thread and Memory Region}
|
|
\label{ex:atype}
|
|
\end{figure}
|
|
|
|
\begin{figure}[hbtp]\centering
|
|
\begin{tabular}{ll}
|
|
\toprule
|
|
\begin{lstlisting}
|
|
type option<A> =
|
|
| None
|
|
| Some (A a)
|
|
\end{lstlisting}
|
|
&\begin{lstlisting}
|
|
type process = {
|
|
// Array of associated threads
|
|
threads : array<option<thread>>;
|
|
// Internal id
|
|
pid : int;
|
|
// Currently running thread
|
|
crt_thread : int;
|
|
// Address space
|
|
adr_space : address_space
|
|
}
|
|
\end{lstlisting}
|
|
\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Input Type -- Process}
|
|
\label{ex:itype}
|
|
\end{figure}
|
|
|
|
The first predicate, \disp{thread}, having the control flow graph shown in
|
|
Figure~\ref{pred:cfg:thread} and whose implementation is shown in
|
|
Figure~\ref{ex:thread:code}, receives a process \disp{p} and an index \disp{i}
|
|
as inputs. It reads the \disp{i}-th element in the \disp{threads} array of the
|
|
input process \disp{p}. If this element is active, then the predicate exits with
|
|
the label \disp{true} and outputs the corresponding thread \disp{ti}. Otherwise,
|
|
it exits with the label \disp{None} and no output is generated.
|
|
|
|
\begin{figure}[!h]
|
|
\begin{lstlisting}
|
|
predicate thread(process p, int i)
|
|
-> [true: thread ti|None|oob]
|
|
{{array<option<thread>> th, option<thread> tio}} {
|
|
th := p.threads : [true -> 1];
|
|
tio := th[i] : [true -> 2, false -> 5];
|
|
switch (tio) as [ |ti] : [None -> 4, Some -> 3];
|
|
[true];
|
|
[None];
|
|
[oob]
|
|
}
|
|
\end{lstlisting}
|
|
\caption{Predicate \disp{thread} -- Implementation}
|
|
\label{ex:thread:code}
|
|
\end{figure}
|
|
|
|
\begin{figure}[!h]\centering
|
|
\resizebox{0.7\textwidth}{!}{%
|
|
\begin{tabular}{@{}c@{}}
|
|
\toprule
|
|
{ \centering
|
|
\hspace{1.6cm}
|
|
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.2cm, semithick,
|
|
statt/.style={fill=lightgray!50,draw=none,text=black,ellipse,inner sep=0pt,minimum width=.7cm,minimum height=.7cm}]
|
|
%
|
|
\node[statt] (N1) {{th := p.threads}};
|
|
\node[statt] (N2) [below=1cm of N1] { {tio := th[i]}};
|
|
\node[statt] (N3) [below left=of N2] { {$\boldsymbol{switch}$(tio) $\boldsymbol{as}$
|
|
[ $\ver$ti}]};
|
|
\node[statt] (N4) [below right=of N2]{\textsf{oob}};
|
|
\node[statt] (N5) [below left=of N3]{\lbtrue};
|
|
\node[statt] (N6) [below right=of N3]{\textsf{None}};
|
|
\path (N1) edge node[xshift=-0.95cm] {{\lbtrue}} (N2);
|
|
\path (N2) edge node[xshift=-0.8cm,yshift = 0.4cm] {\large{\lbtrue}} (N3);
|
|
\path (N2) edge node {{\lbfalse}} (N4);
|
|
\path (N3) edge node[left, anchor=south east] { {\textsf{Some}}} (N5);
|
|
\path (N3) edge node[right, anchor=south west] { {\textsf{None}}} (N6);
|
|
\end{tikzpicture}
|
|
}
|
|
\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
}
|
|
\caption{$G_{\mathit{thread}}$ -- Control Flow Graph of Predicate \disp{thread}}
|
|
\label{pred:cfg:thread}
|
|
\end{figure}
|
|
|
|
|
|
\begin{figure}[hbtp]
|
|
\resizebox{0.95\textwidth}{!}{
|
|
\begin{tabular}{lll}
|
|
\toprule
|
|
\begin{tikzpicture}
|
|
\tikzset{
|
|
position label/.style={
|
|
below = 3pt,
|
|
text height = 1.5ex,
|
|
text depth = 1ex
|
|
},
|
|
brace/.style={
|
|
decoration={brace},
|
|
decorate
|
|
}
|
|
}
|
|
|
|
\node at (3,9) {\Huge Exit label \lbtrue:};
|
|
|
|
\draw[dotted] (0,0) grid[xstep=8, ystep = 2] (8,8);
|
|
\fill[lightgray, opacity=0.2] (0,0) rectangle (8,8);
|
|
\node at (4,1) {\Huge adr\_space};
|
|
\node at (4,3) {\Huge crt\_thread};
|
|
\node at (4,5) {\Huge pid};
|
|
\node at (4,-1) {\Huge process p};
|
|
\draw[help lines] (0,6) grid[xstep=0.5, ystep = 2] (8,8);
|
|
\node at (1,7.5) (nr) {} ;
|
|
|
|
\fill[caribbeangreen](2.5,6) rectangle (3,8);
|
|
\draw[pattern=north west lines, pattern color=black] (2.5,6) rectangle (3,8);
|
|
\node at (4,7) {\Huge threads};
|
|
\end{tikzpicture}
|
|
%
|
|
&\begin{tikzpicture}
|
|
\tikzset{
|
|
position label/.style={
|
|
below = 3pt,
|
|
text height = 1.5ex,
|
|
text depth = 1ex
|
|
},
|
|
brace/.style={
|
|
decoration={brace},
|
|
decorate
|
|
}
|
|
}
|
|
%
|
|
\node at (3,9) {\Huge Exit label \textsf{None}:};
|
|
|
|
\draw[dotted] (0,0) grid[xstep=8, ystep = 2] (8,8);
|
|
\fill[lightgray, opacity=0.2] (0,0) rectangle (8,8);
|
|
\node at (4,1) {\Huge adr\_space};
|
|
\node at (4,3) {\Huge crt\_thread};
|
|
\node at (4,5) {\Huge pid};
|
|
\node at (4,-1) {\Huge process p};
|
|
\draw[help lines] (0,6) grid[xstep=0.5, ystep = 2] (8,8);
|
|
\node at (1,7.5) (nr) {} ;
|
|
|
|
\fill[red, opacity=0.3](2.5,6) rectangle (3,8);
|
|
\draw[pattern=north west lines, pattern color=black] (2.5,6) rectangle (3,8);
|
|
\node at (4,7) {\Huge threads};
|
|
\end{tikzpicture}
|
|
%
|
|
&\begin{tikzpicture}[node distance=0.5cm, legend-square/.style={draw=black!50!white, draw opacity=1, minimum width=1cm, minimum height=1cm, inner sep=0pt, anchor=north west}]
|
|
\node[anchor=base west] at (29,1.8) {\Large option<thread>:};
|
|
\node[fill=caribbeangreen,legend-square] (legend-green) at (29,1) {};
|
|
\node[right=of legend-green] {\Large Some(thread t)};
|
|
\node[fill=red,opacity=0.3,legend-square] (legend-red) at (29,-1) {};
|
|
\node[right=of legend-red] {\Large None};
|
|
|
|
\node[pattern=north west lines, pattern color=black, preaction={fill=lightgray, opacity=0.2},legend-square] (legend-gray-lines) at (29,6) {};
|
|
\node[anchor=base west, right=of legend-gray-lines] {\Large Read/Needed};
|
|
|
|
\node[fill=lightgray, opacity=0.2, minimum width=1cm, minimum height=1cm,legend-square] (legend-gray) at (29,4) {};
|
|
\node[anchor=base west,right=of legend-gray] {\Large Irrelevant/Not Needed};
|
|
|
|
\path[draw=none,fill=none](29,-3.5) rectangle (31,0);
|
|
\end{tikzpicture}\\
|
|
\bottomrule
|
|
%
|
|
\end{tabular}
|
|
}
|
|
\caption{Targeted Dependency Results for Predicate \disp{thread}}
|
|
\label{ex:res:thread}
|
|
\end{figure}
|
|
|
|
Our dependency analysis should be able to distinguish between the different
|
|
exit labels of the predicate. For the label \disp{true} for instance, it
|
|
should detect that only the field \disp{threads} is read by the predicate,
|
|
while all others are irrelevant to the result. Furthermore, it should detect
|
|
that for the \disp{threads} array of the input \disp{p} only the \disp{i}-th
|
|
element is inspected. Additionally, since we are considering the label
|
|
\disp{true}, the \disp{i}-th element is necessarily an \emph{active} thread,
|
|
indicated by the constructor \disp{Some}. The other constructor, \disp{None}, is
|
|
\emph{impossible} for this execution scenario. On the contrary, for the exit
|
|
label \disp{None}, the constructor \disp{Some} is impossible. For the exit label
|
|
\disp{oob}, nothing but the index \disp{i} and the ``support'' or ``length'' of the
|
|
associated \disp{threads} array is read. The targeted dependency results for the
|
|
predicate \disp{thread} are depicted in Figure~\ref{ex:res:thread}.
|
|
%% The second predicate, \disp{start_address}, whose control flow graph is shown in
|
|
%% Figure~\ref{ch4:pred:cfg:start}, receives a process \disp{p} and an index \disp{j}
|
|
%% as inputs and finds the start address of the stack corresponding to an active thread.
|
|
|
|
\begin{figure}[hbtp]\centering
|
|
\resizebox{0.7\textwidth}{!}{%
|
|
\begin{tabular}{@{}c@{}}
|
|
\toprule
|
|
{ \centering
|
|
\hspace{1.6cm}
|
|
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.2cm, semithick,
|
|
statt/.style={fill=lightgray!50,draw=none,text=black,ellipse,inner sep=0pt,minimum width=.7cm,minimum height=.7cm}]
|
|
%
|
|
\node[statt] (N1) {\large {thread(p, j)[true: tj | None | oob]}};
|
|
\node[statt] (N2) [below left=of N1] {\large {sj := tj.stack}};
|
|
\node[statt] (N3) [below right=of N1] {\textsf{None}};
|
|
\node[statt] (N4) [below=1cm of N2]{\large {adr := sj.start}};
|
|
\node[statt] (N5) [below=1cm of N4]{\lbtrue};
|
|
\node[statt] (N6) [below=of N1]{\textsf{error}};
|
|
\path (N1) edge node[xshift=-0.05cm, yshift=0.15cm] {\large {\lbtrue}} (N2);
|
|
\path (N1) edge node {\large {\textsf{None}}} (N3);
|
|
\path (N2) edge node {\large {\lbtrue}} (N4);
|
|
\path (N4) edge node{\large {\lbtrue}} (N5);
|
|
\path (N1) edge node {\large {\textsf{oob}}} (N6);
|
|
\end{tikzpicture}
|
|
}
|
|
\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
}
|
|
\caption{$G_{\mathit{start\_address}}$ -- Control Flow Graph of Predicate \disp{start_address}}
|
|
\label{ch4:pred:cfg:start}
|
|
\end{figure}
|
|
|
|
The second predicate, \disp{start_address}, whose control flow graph is shown in
|
|
Figure~\ref{ch4:pred:cfg:start}, receives a process \disp{p} and an index \disp{j}
|
|
as inputs and finds the start address of the stack corresponding to an active thread.
|
|
It makes a call to the predicate \disp{thread}, thus reading the
|
|
\disp{j}-th element of the \disp{threads} array of its input process. If this is
|
|
an active element, it further accesses the field \disp{stack}, from which it
|
|
only reads the start address \disp{start}. Otherwise, if the element is inactive,
|
|
the predicate forwards the exit label \disp{None} of the called predicate \disp{thread}
|
|
and generates no output. When given an invalid index \disp{i}, the predicate exits
|
|
with label \disp{oob}.
|
|
The predicate's implementation is shown in Figure~\ref{ex:start:code}.
|
|
|
|
\begin{figure}[hbtp]
|
|
\begin{lstlisting}
|
|
predicate start_address(process p, int j)
|
|
-> [true: int adr|None]
|
|
{{thread tj, memory_region sj}} {
|
|
thread(p, j)[true: tj | None | oob] : [true -> 1,
|
|
None -> 4, oob -> 5];
|
|
sj := tj.stack : [true -> 2];
|
|
adr := sj.start : [true -> 3];
|
|
[true];
|
|
[None];
|
|
[error]
|
|
}
|
|
\end{lstlisting}
|
|
\caption{Predicate \disp{start_address} -- Implementation}
|
|
\label{ex:start:code}
|
|
\end{figure}
|
|
|
|
The dependency information for this predicate should capture the fact that on the
|
|
\disp{true} execution scenario, only the field \disp{start} of the input's
|
|
\disp{j}-th associated thread is read. Furthermore, the only possible constructor
|
|
on this execution path is the \disp{Some} constructor. On the contrary, for the
|
|
\disp{None} execution scenario the only possible constructor is the \disp{None}
|
|
constructor. The targeted dependency results for the \disp{start_address}
|
|
predicate are depicted in Figure~\ref{ex:res:start}. We remark that for the \disp{oob}
|
|
execution scenario, only the ``support'' or ``length'' of the \disp{threads} array is
|
|
read.
|
|
|
|
\begin{figure}[hbtp]
|
|
\resizebox{0.95\textwidth}{!}{
|
|
\begin{tabular}{lll}
|
|
\toprule
|
|
\begin{tikzpicture}
|
|
\tikzset{
|
|
position label/.style={
|
|
below = 3pt,
|
|
text height = 1.5ex,
|
|
text depth = 1ex
|
|
},
|
|
brace/.style={
|
|
decoration={brace},
|
|
decorate
|
|
}
|
|
}
|
|
|
|
\node at (3,9) {\Huge Exit label \lbtrue:};
|
|
|
|
\draw[dotted] (0,0) grid[xstep=8, ystep = 2] (8,8);
|
|
\fill[lightgray, opacity=0.2] (0,0) rectangle (8,8);
|
|
\node at (4,1) {\Huge adr\_space};
|
|
\node at (4,3) {\Huge crt\_thread};
|
|
\node at (4,5) {\Huge pid};
|
|
\node at (4,-1) {\Huge process p};
|
|
\draw[help lines] (0,6) grid[xstep=0.5, ystep = 2] (8,8);
|
|
\node at (1,7.5) (nr) {} ;
|
|
|
|
\fill[caribbeangreen](2.5,6) rectangle (3,8);
|
|
\node (tj) at (2.8,7.8) {};
|
|
\node at (4,7) {\Huge threads};
|
|
|
|
\draw[dotted] (9,11) rectangle (12,12);
|
|
\fill[lightgray, opacity=0.2] (9,11) rectangle (12,12);
|
|
\node at (10.5,11.5) {\huge id};
|
|
|
|
\draw[dotted] (9,10) rectangle (12,11);
|
|
\fill[lightgray, opacity=0.2] (9,10) rectangle (12,11);
|
|
\node at (10.5,10.5) {\Large crt\_state};
|
|
|
|
\draw[dotted] (9,9) rectangle (12,10);
|
|
\fill[lightgray, opacity=0.2] (9,9) rectangle (12,10);
|
|
\node (s) at (10.5,9.5) {\Large stack};
|
|
\node (s2) at (9, 9.5) {};
|
|
\node at (10.5,8.5) {\huge thread tj};
|
|
|
|
|
|
\draw[dotted] (14,9) rectangle (16,10);
|
|
\fill[lightgray, opacity=0.2] (14,9) rectangle (16,10);
|
|
\draw[pattern=north west lines, pattern color=black, opacity=0.5] (14,9) rectangle (16,10);
|
|
\node (a) at (15,9.5) {\Huge start};
|
|
\node at (16,8.5) {\huge stack stj};
|
|
|
|
\draw[dotted] (16,9) rectangle (18,10);
|
|
\fill[lightgray, opacity=0.2] (16,9) rectangle (18,10);
|
|
\node at (17,9.5) {\huge length};
|
|
|
|
\draw[->, very thick] (s) edge (a);
|
|
\draw[->, very thick, out=90] (tj) edge (s2);
|
|
|
|
\end{tikzpicture}
|
|
%
|
|
&\begin{tikzpicture}
|
|
\tikzset{
|
|
position label/.style={
|
|
below = 3pt,
|
|
text height = 1.5ex,
|
|
text depth = 1ex
|
|
},
|
|
brace/.style={
|
|
decoration={brace},
|
|
decorate
|
|
}
|
|
}
|
|
%
|
|
\node at (3,9) {\Huge Exit label \textsf{None}:};
|
|
|
|
\draw[dotted] (0,0) grid[xstep=8, ystep = 2] (8,8);
|
|
\fill[lightgray, opacity=0.2] (0,0) rectangle (8,8);
|
|
\node at (4,1) {\Huge adr\_space};
|
|
\node at (4,3) {\Huge crt\_thread};
|
|
\node at (4,5) {\Huge pid};
|
|
\node at (4,7) {\Huge threads};
|
|
\node at (4,-1) {\Huge process p};
|
|
\draw[help lines] (0,6) grid[xstep=0.5, ystep = 2] (8,8);
|
|
\node at (1,7.5) (nr) {} ;
|
|
|
|
\fill[red, opacity=0.3](2.5,6) rectangle (3,8);
|
|
\draw[pattern=north west lines, pattern color=black] (2.5,6) rectangle (3,8);
|
|
%\draw[dotted, red] (2.5,6) rectangle (3,8);
|
|
\end{tikzpicture}
|
|
%
|
|
&\begin{tikzpicture}[node distance=0.5cm, legend-square/.style={draw=black!50!white, draw opacity=1, minimum width=1cm, minimum height=1cm, inner sep=0pt, anchor=north west}]
|
|
\node[anchor=base west] at (29,1.8) {\Large option<thread>:};
|
|
\node[fill=caribbeangreen,legend-square] (legend-green) at (29,1) {};
|
|
\node[right=of legend-green] {\Large Some(thread t)};
|
|
\node[fill=red,opacity=0.3,legend-square] (legend-red) at (29,-1) {};
|
|
\node[right=of legend-red] {\Large None};
|
|
|
|
\node[pattern=north west lines, pattern color=black, preaction={fill=lightgray, opacity=0.2},legend-square] (legend-gray-lines) at (29,6) {};
|
|
\node[anchor=base west, right=of legend-gray-lines] {\Large Read/Needed};
|
|
|
|
\node[fill=lightgray, opacity=0.2, minimum width=1cm, minimum height=1cm,legend-square] (legend-gray) at (29,4) {};
|
|
\node[anchor=base west,right=of legend-gray] {\Large Irrelevant/Not Needed};
|
|
|
|
\path[draw=none,fill=none](29,-3.5) rectangle (31,0);
|
|
\end{tikzpicture}\\
|
|
\bottomrule
|
|
%
|
|
\end{tabular}
|
|
}
|
|
\caption{Targeted Dependency Results for Predicate \disp{start_address}}
|
|
\label{ex:res:start}
|
|
\end{figure}
|
|
|
|
\subsection{The dependency abstract domain}
|
|
\label{sec:depdom}
|
|
|
|
The first step towards inferring expressive, type-sensitive results that capture
|
|
the dependency specific to each subelement of an algebraic data type or an
|
|
associative array, is the definition of an \emph{abstract dependency domain}
|
|
%\defsymbol{$\udep$}{Abstract dependency domain}%
|
|
$\udep$, that mimics the structure of such data types. The dependency domain $\delta \in
|
|
\udep$, shown below, is defined inductively from the three atomic cases ---
|
|
$\everything$, $\nothing$ and $\impossible$ --- and mirrors the structure of the
|
|
concrete types.
|
|
%
|
|
\begin{definition}\label{ch5depdom}{Dependency Domain $\delta \in
|
|
\udep$.}
|
|
\[
|
|
\begin{array}{lllr}
|
|
\dom := &\ver \everything &\textrm{\emph{Everything} -- atomic case} &\snumber{i}\\
|
|
&\ver \nothing &\textrm{\emph{Nothing} -- atomic case} &\snumber{ii}\\
|
|
&\ver \impossible &\textrm{\emph{Impossible} -- atomic case} &\snumber{iii}\\
|
|
&\ver \structdom{\dstruct{1}}{\dstruct{n}} &f_1, \ldots, f_n \textrm{ fields} &\snumber{iv}\\
|
|
&\ver \vardom{\dvar{1}}{\dvar{m}} & C_1, \ldots, C_m \textrm{ constructors} &\snumber{v}\\
|
|
&\ver \adom{\dom} & &\snumber{vi} \\
|
|
&\ver \addef & i \; \textrm{array index} & \snumber{vii}\\
|
|
\end{array}
|
|
\]
|
|
\end{definition}
|
|
%
|
|
\noindent As reflected by the above definition, the dependency for atomic types
|
|
is expressed in terms of the domain's atomic cases: \everything{} (least
|
|
precise), denoting that \emph{everything} is needed and \nothing, denoting that
|
|
\emph{nothing} is needed. The third atomic case \impossible, denoting
|
|
\emph{impossible}, is introduced for the \emph{possible constructors} analysis
|
|
performed simultaneously, and is further explained below.
|
|
|
|
The dependency of a structure {\snumber{iv}} describes the dependency on each of
|
|
its fields. %% For example, the dependency assigned to a structure having three
|
|
%% fields, $f$, $g$ and $h$, in the context of a predicate operating on it and
|
|
%% reading only the $h$ field, while ignoring the other two fields, could be of the
|
|
%% following form: $\{f \mapsto \oslash, g \mapsto \oslash, h \mapsto \top \}$.
|
|
For instance, revisiting our \disp{thread} example from
|
|
Section~\ref{sec:intro:example}, we could express an over-approximation of the
|
|
dependency information depicted for the process \disp{p} in
|
|
Figure~\ref{ex:res:thread} using the following dependency:
|
|
%
|
|
\[
|
|
\{\mathit{threads} \mapsto \top; \; \mathit{pid} \mapsto \oslash; \;
|
|
\mathit{crt\_thread} \mapsto \oslash; \; \mathit{adr\_space} \mapsto \oslash \}.\]
|
|
%
|
|
This captures the fact that all fields except the \disp{threads} field are
|
|
irrelevant, i.e. they are not read and \emph{nothing} in their contents is
|
|
needed. The dependency for the \disp{threads} field is an over-approximation
|
|
and expresses the fact that it is entirely necessary, i.e. \emph{everything} in
|
|
its value is needed for the result.
|
|
|
|
For arrays we distinguish between two cases, namely arrays with a general
|
|
dependency applying to all of the cells {given by \snumber{vi}} and arrays with a
|
|
general dependency applying to \emph{all but one} exceptional cell, for which a specific
|
|
dependency is known {given by \snumber{vii}}. %% For example, the dependency assigned to an
|
|
%% array having elements of the structured type with three fields used above,
|
|
%% considered in the context of a predicate reading only the field $h$ of the $i$-th
|
|
%% array element and ignoring everything else, could be of the following form:
|
|
%% $\aexcdom{\oslash}{i}{\{f \mapsto \oslash, g \mapsto \oslash, h \mapsto \top \}}$.
|
|
For instance, for the \disp{threads} field of the previous example, the
|
|
following dependency:
|
|
%
|
|
\[
|
|
\aexcdom{\oslash}{i}{\top}
|
|
\]
|
|
%
|
|
would be a less coarse approximation, capturing the fact that only the \disp{i}-th
|
|
element of the associated \disp{threads} array is needed, while all others are
|
|
irrelevant.
|
|
|
|
For variants {\snumber{v}}, the dependency is expressed in terms of the
|
|
dependencies of their constructors, expressed in turn in terms of their
|
|
arguments' dependencies. Thus, a constructor having a dependency mapped to
|
|
\nothing{} is one for which nothing but the \emph{tag} has been read, i.e. its
|
|
arguments, if any, are irrelevant for the execution. %% For instance, the dependency assigned to a
|
|
%% variant having two constructors $A$ and $B$, in the context of a predicate that
|
|
%% only reads the tag for the $A$ constructor and depends completely on the $B$
|
|
%% constructor, could be of the following form:
|
|
%% $[A \mapsto \oslash; B \mapsto \top]$.
|
|
For instance, for the \disp{i}-th element of the \disp{threads} array of our
|
|
previous example, the following dependency:
|
|
%
|
|
\[
|
|
[\mathit{Some} \mapsto \top; \mathit{None} \mapsto \oslash]
|
|
\]
|
|
%
|
|
would be a more precise approximation, when considering the exit label
|
|
\disp{true}. It is still an over-approximation as it expresses that both
|
|
constructors are possible. The argument of the \disp{Some} constructor is
|
|
entirely read, while for \disp{None} only the tag is read.
|
|
%% This expresses the fact that the only possible constructor is
|
|
%% \disp{Some} and that its argument is entirely read.
|
|
|
|
For variants, we want to take a step further and to also include the information
|
|
that certain constructors cannot occur for certain execution paths. \emph{Impossible}, the third
|
|
atomic case --- \impossible{} --- is introduced for this purpose. As mentioned
|
|
previously in Section~\ref{sec:intro}, in order to obtain this additional
|
|
information, we perform a ``possible-constructors'' analysis simultaneously,
|
|
which computes for each execution scenario, the subset of possible constructors
|
|
for a given value, at a given program point. All constructors that cannot occur
|
|
on a given execution path are marked as being \impossible. In contrast,
|
|
constructors for which \emph{only} the tag is read are marked as $\oslash$. The
|
|
difference between $\impossible$ and $\nothing$ can be illustrated by
|
|
considering a polymorphic option type \emph{option<A>}, having two constructors,
|
|
$None$ and $\mathit{Some(A \, val)}$, respectively, and a Boolean predicate that
|
|
pattern matches on an input of this type and returns \emph{false} in the case of
|
|
$None$ and \emph{true} in the case of $Some$, unconditioned by the value $val$ of
|
|
its argument. For the \emph{true} execution scenario, the dependency on the
|
|
$Some$ constructor would be $\oslash$. The tag is read and it is decisive for the
|
|
outcome, but the value of its argument $val$ is completely irrelevant. The
|
|
dependency on the $None$ constructor however would be $\impossible$: the
|
|
predicate can exit with label \emph{true} if and only if the input matches
|
|
against the $Some$ constructor. By distinguishing between these two cases we
|
|
can not only distinguish the input's subelements that have a direct impact on an
|
|
operation's output, but additionally, we can also obtain a more detailed
|
|
footprint that highlights the influence exerted by the input's ``shape'' on the
|
|
operation's outcome.
|
|
|
|
For instance, for the \disp{i}-th element of the \disp{threads} array of our
|
|
previous example, a dependency mapping the constructor \disp{None} to $\bot$
|
|
would be a more precise approximation, when considering the label \disp{true}.
|
|
Taking into account all the discussed values, we can express the dependency
|
|
depicted in Figure~\ref{ex:res:thread} for the label \disp{true} as follows:
|
|
|
|
\[
|
|
\left \{
|
|
\begin{array}{lll}
|
|
\mathit{threads} &\mapsto & \aexcdom{\oslash}{i}{[\mathit{Some} \mapsto \top; \mathit{None} \mapsto \bot]}\\
|
|
\mathit{pid} &\mapsto &\oslash \\
|
|
\mathit{crt\_thread} &\mapsto &\oslash \\
|
|
\mathit{adr\_space} &\mapsto &\oslash\\
|
|
\end{array}
|
|
\right\}.
|
|
\]
|
|
|
|
We remark that $\top$, $\oslash$ and $\bot$ can apply to any type. For
|
|
instance, $\top$ can be seen as a placeholder for data that is needed in its
|
|
entirety. Structure, array or variant dependencies whose subelements are all
|
|
entirely needed and thus, uniformly mapped to $\top$, are transformed to $\top$.
|
|
The $\bot$ dependency is a placeholder for data that cannot occur on a certain
|
|
execution scenario. A whole variant value is impossible if all its constructors
|
|
are mapped to $\bot$. A whole structure or array is impossible if any of its
|
|
subelements is impossible.
|
|
|
|
The {\impossible} atomic value is the lower bound of our domain and hence, the
|
|
most precise value. The final abstract dependency is a closure of all these combined
|
|
recursively. To give an intuition of the shape of our dependency lattice, we
|
|
illustrate below in Figure~\ref{hasse} the Hasse diagram of the order relation
|
|
between pairs of atomic dependency values. Intuitively, if the two analyses would
|
|
be performed separately, the upper ``diamond'' shape would correspond to the
|
|
dependency analysis, and the lower one to the possible-constructors analysis. The
|
|
$\oslash$ element would be the lower bound for the dependency domain and the upper
|
|
bound for the possible-constructors domain. By performing them simultaneously,
|
|
$\bot$ becomes the domain's lower bound.
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\node (top) at (0,0) {$(\top,\top)$};
|
|
\node [below left of=top] (left) {$(\top, \oslash)$};
|
|
\node [below right of=top] (right) {$(\oslash, \top)$};
|
|
\node [below right of=left,yshift=-0.25cm] (middle) {$(\oslash, \oslash)$};
|
|
|
|
\node [below left of=middle, yshift=-0.25cm] (lowerleft) {$(\bot, \oslash)$};
|
|
\node [below right of=middle,yshift=-0.25cm] (lowerright) {$(\oslash, \bot)$};
|
|
|
|
\node [below right of=lowerleft] (bot) {$(\bot, \bot)$};
|
|
|
|
\node [above right of=lowerleft, xshift=-1.5cm, yshift=-4.25] (inbetleft) {$(\top, \bot)$};
|
|
\node [above left of=lowerright, xshift=1.5cm, yshift=-4.25] (inbetright) {$(\bot, \top)$};
|
|
|
|
\draw [thick, shorten <=-3pt, shorten >=-5pt, out=-120, in=90] (top) to (left);
|
|
\draw [thick, shorten <=-3pt, shorten >=-5pt, out=-60, in=90] (top) to (right);
|
|
|
|
\draw [thick, shorten <=-5pt, shorten >=-3pt, out=120, in=-90] (middle) to (left);
|
|
\draw [thick, shorten <=-5pt, shorten >=-3pt, out=60, in=-90] (middle) to (right);
|
|
|
|
\draw [thick, shorten <=-3pt, shorten >=-5pt, out=-120, in=90] (middle) to (lowerleft);
|
|
\draw [thick, shorten <=-3pt, shorten >=-5pt, out=-60, in=90] (middle) to (lowerright);
|
|
|
|
\draw [thick, shorten <=-5pt, shorten >=-3pt, out=120, in=-90] (bot) to (lowerleft);
|
|
\draw [thick, shorten <=-5pt, shorten >=-3pt, out=60, in=-90] (bot) to (lowerright);
|
|
|
|
\draw [gray, thick, shorten <=-5pt, shorten >=-3pt, out=160, in=-90] (bot) to (inbetleft);
|
|
\draw [gray, thick, shorten <=-5pt, shorten >=-3pt, out=20, in=-90] (bot) to (inbetright);
|
|
|
|
\draw [gray, thick, shorten <=-5pt, shorten >=-3pt, out=100, in=-150] (inbetleft) to (left);
|
|
\draw [gray, thick, shorten <=-5pt, shorten >=-3pt, out=80, in=-30] (inbetright) to (right);
|
|
\end{tikzpicture}
|
|
\captionof{figure}{Order Relation on Pairs of Atomic Dependencies}
|
|
\label{hasse}
|
|
\end{center}
|
|
|
|
\subsection{Dependency flow equations}
|
|
The intraprocedural dependency analysis keeps dependency information at each point
|
|
of the control flow graph, for each input, output and local
|
|
variables.
|
|
|
|
\begin{definition}{Intraprocedural Dependency Domain $\intra \in \uintra$.}\label{ch5:intradom:definition}
|
|
The \emph{intraprocedural} dependency domain $\uintra$ is defined as
|
|
%
|
|
\[\intra \ni \uintra = \mathcal{V} \rightarrow \udep\]
|
|
%
|
|
An element of this domain is a mapping from variables to dependencies.
|
|
\end{definition}
|
|
|
|
|
|
Our dependency analysis is a \emph{backward} data-flow analysis. For each exit
|
|
label, it traverses the control flow graph starting with its corresponding exit
|
|
node and it marks all other exit points as \emph{Unreachable}, since exit labels
|
|
are mutually exclusive. The intraprocedural domain for the currently analysed
|
|
label is initialized with its associated output variables mapped to \everything.
|
|
Thereby, the analysis starts by making a conservative approximation and by
|
|
considering that all the input has been observed and the output depends on it
|
|
entirely. Typically, dependence analyses are \emph{forward} analyses. However,
|
|
given our goal to express \emph{label-specific} dependencies as input-output
|
|
relations and taking into consideration the characteristics of the {\asmil}
|
|
language, choosing to design our analysis as a backward data-flow analysis
|
|
seemed a pertinent choice. In {\asmil}, outputs are associated to a particular
|
|
exit label and they are generated if and only if the predicate exits with that
|
|
particular label. By traversing the control flow graph backwards, we can use
|
|
this information and consider, starting with the initialisation phase, only the outputs
|
|
that are relevant for the analysed exit label.
|
|
|
|
After the initialisation, the analysis then traverses the control flow graph and
|
|
gradually refines the dependencies until a fixed point is reached.
|
|
Table~\ref{representation} summarizes the representation and general equation of
|
|
the statements. For each statement, the presented data-flow equation operates on
|
|
the intraprocedural domains of the statement's \emph{successor} nodes. The
|
|
intraprocedural domain at the \emph{entry point} of the node is obtained by
|
|
\emph{joining} the contributions of each \emph{outgoing} edge as shown in
|
|
Figure~\ref{intra:contrib:entry}.
|
|
|
|
|
|
\definecolor{indianred}{rgb}{0.90, 0.80, 0.71} %melon
|
|
\tikzstyle{vertex} = [ellipse, fill=lightgray!50, minimum size =30pt, inner sep = 0pt]
|
|
\tikzstyle{edge} = [draw, semithick, -> ]
|
|
\begin{figure}[hbt]\centering
|
|
\begin{tabular}{@{}c@{}}
|
|
\toprule
|
|
\begin{tikzpicture}
|
|
[scale=0.4, auto]
|
|
\node[vertex] (n1) at (10.5,14) {\phantom{switch }\Large{\textsf{statement}}\phantom{switch}};
|
|
\draw[edge] (10.5,16.3) -- (10.5,15.2);
|
|
\node [above](l1) at (6.5, 16.15) {$\Delta_{in} = \;$};
|
|
%% \node [above](l9) at (14.95, 16.1) {$ \;[(\Delta_{\lambda_1}\!\setminus \textrm{\textsf{gen}})\oplus \transfer{.}{s}{\lambda_1}]\vee \ldots \vee [(\Delta_{\lambda_n}\!\setminus \textrm{\textsf{gen}})\oplus \transfer{.}{s}
|
|
%% {\lambda_n}] \;$};
|
|
\node [above](l9) at (14.95, 16.1) {$ \; \transfer{\Delta_{\lambda_1}}{s}{\lambda_1} \ijoin \ldots \ijoin
|
|
\transfer{\Delta_{\lambda_n}}{s}{\lambda_n}\;$};
|
|
\node (contrib) at (23.2, 15.2) {\small $\transfer{\Delta_i}{s}{\lambda_i} : (\Delta_i \setminus
|
|
\textrm{\textsf{gen}}_{s, \lambda_i}) \ireduce \delta_{s,\lambda_i}$} ;
|
|
\node (line2) at (24.2, 14) {\small $\delta_{s,\lambda_i}$ contribution of $s$ on $\lambda_i$};
|
|
|
|
\draw[edge] (8.5, 12.75) -- (7.5, 9.5);
|
|
\node [below](l2) at (6.5, 11.9) {\small $\delta_{s,\lambda_1}$};
|
|
\node [above](l3) at (6.6, 9.4) {$\Delta_{\lambda_{1}}$};
|
|
\draw[edge] (12.5, 12.75) -- (13.5, 9.5);
|
|
\node [below](l6) at (10.5, 12.5) {$\ldots$};
|
|
\node [below](l4) at (14.5, 11.9) {\small $\delta_{s,\lambda_n}$};
|
|
\node [above](l5) at (14.5, 9.4) {$\Delta_{\lambda_{n}}$};
|
|
\node [below](l7) at (4.1, 12.9) {\footnotesize ($\Delta_{\lambda_1}\!\setminus \textrm{\textsf{gen}}_{s,\lambda_1}$) $\ireduce \delta_{s,\lambda_1} $};
|
|
\node [below](l8) at (17, 12.9) {\footnotesize ($\Delta_{\lambda_n}\!\setminus \textrm{\textsf{gen}}_{s,\lambda_n}$) $\ireduce \delta_{s,\lambda_n}$};
|
|
\end{tikzpicture} \\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Computation of the Intraprocedural Domain at a Node's Entry Point}
|
|
\label{intra:contrib:entry}
|
|
\end{figure}
|
|
|
|
Table~\ref{generic} presents the transfer functions for statements which are not
|
|
type-specific. For equality tests \snumber{1} both of the inputs $e_1$, $e_2$ are
|
|
completely read, whether the test returns \lbtrue{} or \lbfalse. The transfer
|
|
functions therefore, reduce the domain of the corresponding successor node with
|
|
a domain consisting of $e_1$ and $e_2$ both mapped to $\everything$.
|
|
%
|
|
In the case of assignment \snumber{2}, the dependency of the written output
|
|
variable $o$ is forgotten from the successor's intraprocedural domain, thus
|
|
being mapped to \nothing{} and forwarded to the input variable $e$.
|
|
%
|
|
The transfer function for the $\unop$ operation \snumber{3} is simply the
|
|
identity.
|
|
|
|
\begin{longtable}{@{}c@{}}
|
|
\caption{Generic Statements -- Data-Flow Equations}
|
|
\ra{1.4}
|
|
\label{generic}
|
|
\endlastfoot
|
|
\resizebox{0.99\linewidth}{!}{
|
|
$
|
|
\begin{array}{@{}lll@{}}
|
|
\toprule
|
|
\textsf{Statement} & & \transfer {\intra}{s}{\lambda_i}
|
|
\\
|
|
\midrule
|
|
%
|
|
%Equality test
|
|
\textrm{\textsf{Equality test}} & (1)
|
|
%
|
|
&\begin{tabular}{@{}lcccl@{}}
|
|
$ \transfer{\intra}{e_1 = e_2}{\textrm{\lbtrue}} = \displaystyle \intra \; \ireduce\; dep $
|
|
&&&& where
|
|
%
|
|
\\
|
|
$\transfer{\intra}{e_1 = e_2}{\textrm{\lbfalse}} = \displaystyle \intra \; \ireduce\; dep
|
|
$
|
|
&&&&
|
|
$ dep = \left \{
|
|
\begin{array} {lcl}
|
|
e_1 & \mapsto \top \\
|
|
e_2 & \mapsto \top
|
|
\end{array}
|
|
|
|
\right \} $
|
|
\\
|
|
\end{tabular}
|
|
%
|
|
\\ \\
|
|
%
|
|
%Assignment
|
|
\textrm{\textsf{Assignment}} & (2)
|
|
%
|
|
& \transfer{\intra}{o:=e}{\lbtrue} = \displaystyle \killo{}{o} \; \ireduce \;
|
|
\{ e \mapsto \intra(o) \}\\\\
|
|
%Nop
|
|
\textrm{\textsf{No Operation}} & (3) &\transfer{\intra}{\unop}{\lbtrue} = \intra \\\\
|
|
\bottomrule
|
|
\end{array}
|
|
$
|
|
}
|
|
\end{longtable}
|
|
%
|
|
|
|
The data-flow equations given in Table~\ref{structures} correspond to
|
|
structure-related statements. For the equations \snumber{4}, \snumber{5},
|
|
\snumber{6} and \snumber{7} we assume that the variable $r$ is of type
|
|
$\commonstype$ for some fields $f_i,\; 1 \leq i \leq n$. The equation \snumber{4}
|
|
refers to the creation of a structure: each input $e_i$ is read as much as the
|
|
corresponding field $f_i$ of the structure is read.
|
|
%
|
|
The destructuring of a structure is handled in \snumber{5}: each field $f_i$ is
|
|
needed as much as the corresponding variable $o_i$ is.
|
|
%
|
|
When accessing the $i$-th field of a structure $r$ \snumber{6}, only the field
|
|
$f_i$ is read, and only as much as the access' result $o$ itself.
|
|
%
|
|
The equation \snumber{7} treats field updates: the variable $e_i$ is read as much
|
|
as the field $f_i$ is. The structure $r$ is read as much as all the fields other
|
|
than $f_i$ are read in $r'$.
|
|
%
|
|
Finally, the equations given in \snumber{8} handle partial structure equality
|
|
tests, and the transfer functions are the same for the labels \lbtrue{} or
|
|
\lbfalse: for both compared structures $r'$ and $r''$, all the fields in the given
|
|
set $f_1, \ldots, f_k$ are completely read, and only those.
|
|
|
|
\begin{longtable}{@{}c@{}}
|
|
\caption{Structure-Related Statements -- Data-Flow Equations}
|
|
\ra{1.3}
|
|
\label{structures}
|
|
\endlastfoot
|
|
\resizebox{0.99\linewidth}{!}{
|
|
$
|
|
\begin{array}{@{}lcl@{}}
|
|
\toprule
|
|
\textsf{Statement} & & \transfer {\intra}{s}{\lambda_i} \\
|
|
\midrule
|
|
%Create Structure
|
|
\textrm{\textsf{Create}} & \textrm{(4)}
|
|
& \transfer{\intra}{\recordnew}{\textrm{\textsf{\lbtrue}}} =
|
|
\displaystyle \killo {}{r} \; \ireduce \; \displaystyle \bigoplus_{1\leq i \leq n}\{e_i \mapsto \intra(r).f_i \}\\\\
|
|
% Destruct structure
|
|
\textrm{\textsf{Destructure}} & \textrm{(5)}
|
|
& \transfer{\intra}{\recordall}{\textrm{\textsf{\lbtrue}}} =
|
|
\displaystyle \killo {}{ \{o_i \ver o_i \in \bar{o} \}} \; \ireduce \;
|
|
\displaystyle \{r \mapsto \{f_1 \mapsto\intra(o_1); \ldots; f_n \mapsto \intra(o_n)\}\}\\\\
|
|
% Field Access
|
|
\textrm{\textsf{Access field}} & \textrm{(6)}
|
|
& \transfer{\intra}{\recordget}{\textrm{\textsf{\lbtrue}}} =
|
|
\displaystyle \killo {}{o} \; \ireduce \; \{r \mapsto \{f_1 \mapsto \oslash; \ldots;
|
|
f_i \mapsto \intra(o); \ldots; f_n \mapsto \oslash \} \}\\\\
|
|
% Field Update
|
|
\textrm{\textsf{Update field}} & \textrm{(7)}
|
|
& \transfer{\intra}{\recordset}{\textrm{\textsf{\lbtrue}}} =
|
|
\displaystyle \killo{}{r'}
|
|
\; \ireduce \;
|
|
\left \{
|
|
\begin{array}{lll}
|
|
e_i & \mapsto & \intra(r').f_i \\
|
|
r & \mapsto & \left \{ \displaystyle
|
|
f_1 \mapsto \delta_1; \ldots ; f_n \mapsto \delta_n
|
|
\right \}
|
|
\end{array}
|
|
\right \} \\\\
|
|
&& \textrm{where } \delta_j = \left \{
|
|
\begin{array}{ll}
|
|
\intra(r').f_j & \textrm{if $j \neq i $} \\
|
|
\oslash & \textrm{otherwise}\\
|
|
\end{array} \right . \\\\
|
|
% Structure Equality
|
|
\textrm{\textsf{Equality}} & \textrm{(8)}
|
|
&
|
|
\begin{tabular}{@{}lccl@{}}
|
|
$\transfer{\intra}{\recordeq}{\lbtrue} = \displaystyle
|
|
\intra \; \ireduce \; d$
|
|
&&&
|
|
%\textrm{where}
|
|
$ \textrm{where } d = \left \{
|
|
\begin{array} {lll}
|
|
r' & \mapsto & \displaystyle \left \{ f_1 \mapsto \delta_1; \ldots ; f_n \mapsto \delta_n
|
|
\right \} \\
|
|
r'' & \mapsto & \displaystyle \left \{ f_1 \mapsto \delta_1; \ldots; f_n \mapsto \delta_n
|
|
\right \}
|
|
\end{array}
|
|
\right \}
|
|
\;
|
|
$ \\\\
|
|
$\transfer{\intra}{\recordeq}{\lbfalse} = \displaystyle
|
|
\intra \; \ireduce \; d $
|
|
&&& $\textrm{and } \delta_i = \left \{
|
|
\begin{array} {ll}
|
|
\top & \textrm{if } f_i \in \{f_1, \ldots, f_k\}\\
|
|
\oslash & \textrm{otherwise}
|
|
\end{array}
|
|
\right.
|
|
\;
|
|
$
|
|
\end{tabular}\\ \\
|
|
\bottomrule
|
|
\end{array}
|
|
$
|
|
}
|
|
\end{longtable}
|
|
|
|
|
|
%%% More tables for arrays and variants at line 1985 in Chapter5.tex
|
|
|
|
|
|
\subsection{Intraprocedural Dependency Analysis Illustrated}\label{sec:intra:example}
|
|
|
|
To better illustrate our analysis at an intraprocedural level, we exemplify
|
|
the mechanism behind it, step by step, on the predicate \disp{thread}, discussed
|
|
in Section~\ref{sec:intro:example}. We consider the \disp{true} execution
|
|
scenario, apply our dependency analysis and compare the actual obtained results
|
|
with the targeted ones depicted in Figure~\ref{ex:res:thread}.
|
|
|
|
\definecolor{indianred}{rgb}{0.90, 0.80, 0.71} %melon
|
|
\definecolor{burg}{rgb}{0.8, 0.36, 0.36}
|
|
\tikzstyle{vertex} = [ellipse, fill=lightgray!50, minimum size =30pt, inner sep = 0pt]
|
|
\tikzstyle{lvertex} = [circle, fill=lightgray!50, minimum size=30pt, inner sep=0pt]
|
|
\tikzstyle{ivertex} = [circle, draw=red, minimum size=30pt, inner sep = 0pt]
|
|
\tikzstyle{edge} = [draw, semithick, -> ]
|
|
\tikzstyle{edgeRed} = [draw=red!50!black, dashed, thick, -> ]
|
|
\begin{figure}[h]\centering
|
|
\begin{tabular}{@{}c@{}}
|
|
\toprule
|
|
%% \begin{tikzpicture}
|
|
%% [scale=0.6, auto]
|
|
%% \node[vertex] (n1) at (10,14) {\emph{threads := p.threads}};
|
|
%% \node[vertex] (n2) at (10,11) {\emph{tio := threads[i]}};
|
|
%% \node[vertex] (n3) at (10,8) {\emph{switch(tio) as [ti$\arrowvert\;$]}};
|
|
|
|
%% \node (n4) [draw=red!50!black, circle,fill=lightgray!50, minimum size=30pt, inner sep =0pt] at(8,5.5) {\emph{true}};
|
|
%% \draw[draw=red!50!black] (8,5.5) circle(20pt);
|
|
|
|
%% \node (n5) [draw=red!50!black, circle,fill=lightgray!50, minimum size=30pt, inner sep =0pt] at(12,5.5) {\emph{None}};
|
|
%% \draw[draw=red!50!black] (12,5.5) circle(20pt);
|
|
|
|
%% \foreach \from/\to in {n1/n2,n2/n3,n3/n4,n3/n5}{
|
|
%% \draw[edge] (\from) -- (\to);
|
|
%% }
|
|
|
|
%% \draw (n2.-30) edge[semithick,->,bend left,in=120] (n5.30);
|
|
|
|
%% \node(n8) [draw=indianred!50, fill = indianred!50, scale=0.7] at (17.5, 4) {
|
|
%% \textrm{thread(p, i) $\to$ [true: ti $\ver$ None]}};
|
|
|
|
%% \node(n9)[draw=burg, scale = 0.8] at (15.75,5.5) {
|
|
%% \begin{tabular}{c}
|
|
%% $ \mathit{Unreachable} $\\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \node(d1) [draw=caribbeangreen, scale = 0.9] at (3,5.5) {
|
|
%% \begin{tabular}{c}
|
|
%% ti $\mapsto$ $\top$\\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \end{tikzpicture}
|
|
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.2cm, semithick,
|
|
statt/.style={scale=0.7,fill=lightgray!50,draw=none,text=black,ellipse,inner sep=0pt,minimum width=.7cm,minimum height=.7cm}]
|
|
%
|
|
\node[statt] (N1) {\large {th := p.threads}};
|
|
\node[statt] (N2) [below=1cm of N1] {\large {tio := th[i]}};
|
|
\node[statt] (N3) [below left=of N2] {\large {$\boldsymbol{switch}$(tio) $\boldsymbol{as}$
|
|
[ $\ver$ti}]};
|
|
\node[statt] (N4) [below right=of N2]{\textsf{oob}};
|
|
\node[statt] (N5) [below left=of N3]{\lbtrue};
|
|
\node[statt] (N6) [below right=of N3]{\textsf{None}};
|
|
\path (N1) edge node[xshift=-0.95cm] {\large {\lbtrue}} (N2);
|
|
\path (N2) edge node[xshift=-0.8cm,yshift = 0.4cm] {\large{\lbtrue}} (N3);
|
|
\path (N2) edge node {\large {\lbfalse}} (N4);
|
|
\path (N3) edge node[left, anchor=south east] {\large {\textsf{Some}}} (N5);
|
|
\path (N3) edge node[right, anchor=south west] {\large {\textsf{None}}} (N6);
|
|
|
|
\node(n8)[draw=burg,dotted, scale = 0.7, right=of N4, xshift=-1.6cm] {
|
|
\begin{tabular}{c}
|
|
$ \mathit{Unreachable} $\\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(n9)[draw=burg,dotted, scale = 0.7, right=of N6] {
|
|
\begin{tabular}{c}
|
|
$ \mathit{Unreachable} $\\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(d1) [draw=caribbeangreen, scale = 0.9, left=of N5] {
|
|
\begin{tabular}{c}
|
|
ti $\mapsto$ $\top$\\
|
|
\end{tabular}
|
|
};
|
|
\end{tikzpicture}\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Analysing Predicate \disp{thread} -- Initialisation}
|
|
\label{intra:ss:init}
|
|
\end{figure}
|
|
|
|
Since a predicate can only exit with one label at a time and we are considering
|
|
the \disp{true} label, we can map the nodes \disp{None} and \disp{oob} to
|
|
\emph{Unreachable}, as shown in Figure~\ref{intra:ss:init}. This is an advantage
|
|
of backwards analyses. For \disp{true}, we
|
|
make a pessimistic assumption and map the output \disp{ti} to {\everything},
|
|
considering that control on the output is external and hence, out of our reach,
|
|
and that \disp{ti} will be entirely needed by a potential caller. Going further
|
|
up the control flow graph, we analyse the \emph{variant switch}.
|
|
|
|
In order to compute the dependency for the node corresponding to the variant
|
|
switch, we apply the data-flow equation, given by \snumber{10} in
|
|
Table~\ref{variants}. Since we are analysing the \disp{true} case, we know that
|
|
all other constructors (only the constructor \disp{None} in this case) are
|
|
locally impossible. Thus, we map it to $\bot$. We continue by forgetting the
|
|
dependency information we knew about the output \disp{ti}. Since its value is
|
|
needed only in as much as the result of the switch on the corresponding edge is
|
|
needed, we forward it to the part corresponding to the \disp{Some} constructor.
|
|
This is summarized below:
|
|
|
|
\begin{figure}[!h]\centering
|
|
\begin{tabular}{c}
|
|
%\begin{table}{@{}c@{}}
|
|
\toprule
|
|
\begin{tikzpicture}[
|
|
dot/.style={circle,inner sep=0pt,minimum size=1mm,fill=black},
|
|
]
|
|
|
|
\matrix[inner sep=0pt,ampersand replacement=\&] (mtop) {
|
|
\dottriangle{(0,0)}{1}{}{5}{4}{};\&
|
|
\node[resetinnersep, anchor=base,yshift=-.2cm] (dots2) {$\vphantom{x}\dots\vphantom{x}$};\&
|
|
\coordinate (myorigin);
|
|
\dottriangle{(0,0)}{ia}{}{5}{4}{};
|
|
\coordinate[xshift=.15cm] (coord-ib) at (dottriangle-isep-ia.east |- myorigin);
|
|
\node[anchor=west,inner sep=0pt] (ioplus) at (dottriangle-boundingbox-ia.east) {$\vphantom{x}\mathbin{\oplus}\vphantom{x}\;$};
|
|
\dottriangle{(ioplus.east |- myorigin)}{ib}{green!50!black}{5}{4}{fill=green!50!black!30!white};
|
|
{
|
|
\node[anchor=west,inner sep=0pt,opacity=0] (ioplus) at (dottriangle-boundingbox-ia.east) {$\vphantom{x}\mathbin{\oplus}\vphantom{x}\;$};
|
|
\dottriangle{(ioplus.east |- myorigin)}{ib}{green!50!black,opacity=0}{5}{4}{fill=green!50!black!30!white,opacity=0};
|
|
}
|
|
\&
|
|
\node[resetinnersep, anchor=base,yshift=-.2cm] (dotsn1) {$\vphantom{x}\dots\vphantom{x}$};\&
|
|
\dottriangle{(0,0)}{n}{}{5}{4}{}; \\
|
|
};
|
|
|
|
% Draw bottoms on top:
|
|
\node[fit=(dottriangle-bg-1),fill=red!20!white,inner sep=0pt,opacity=.9] {};
|
|
\node[green!50!black] at (dottriangle-bg-1.center) {$\bot$};
|
|
\node[fit=(dottriangle-bg-n),fill=red!20!white,inner sep=0pt,opacity=.9] {};
|
|
\node[green!50!black] at (dottriangle-bg-n.center) {$\bot$};
|
|
|
|
\draw (dottriangle-isep-1.east |- mtop.north) -- (dottriangle-isep-1.east |- mtop.south);
|
|
\draw (dots2.east |- mtop.north) -- (dots2.east |- mtop.south);
|
|
\draw (dottriangle-isep-ib.east |- mtop.north) -- (dottriangle-isep-ib.east |- mtop.south);
|
|
\draw (dotsn1.east |- mtop.north) -- (dotsn1.east |- mtop.south);
|
|
|
|
\node[resetinnersep,anchor=south,yshift=.3cm] at (dottriangle-dot-1 |- mtop.north) (num1) {\footnotesize$C_1$};
|
|
\path ($(dottriangle-dot-ia)!.5!(dottriangle-dot-ib)$) |- node[resetinnersep,anchor=south,yshift=.3cm] (numi) {\footnotesize$C_{Some}$} (mtop.north);
|
|
\node[resetinnersep,anchor=south,yshift=.3cm] at (dottriangle-dot-n |- mtop.north) (numn) {\footnotesize$C_n$};
|
|
|
|
\node[inner sep=0pt,fit=(num1) (numi) (numn)] (mnum) {};
|
|
\node[inner sep=0pt,fit=(mtop) (mnum)] (mall) {};
|
|
|
|
\path[fill=black!7] (mnum.south west -| mall.west) -- (mnum.south east -| mall.east) -- (mtop.north east -| mall.east) -- (mtop.north west -| mall.west) -- cycle;
|
|
\path (mnum.south west -| mall.west) edge[draw] (mnum.south east -| mall.east) -- (mtop.north east -| mall.east) edge[draw] (mtop.north west -| mall.west) -- cycle;
|
|
\draw (mall.north west) -- (mall.north east) -- (mall.south east) -- (mall.south west) -- cycle;
|
|
|
|
\node[anchor=base east,xshift=\defaultinnersep] (a) at (dottriangle-x-1.base -| mall.west) {$\mathit{tio} =\vphantom{x}$};
|
|
|
|
\node[below left,yshift=-3mm] (o) at (mall.south west) {$\mathit{ti} =$};
|
|
|
|
\dottriangle{(o.base east)}{o}{red}{5}{4}{fill=red!30!white};
|
|
% cross out:
|
|
\node[draw=red,cross out,inner sep=0pt,minimum width=.75cm,minimum height=.55cm,thick,opacity=.5] at (dottriangle-bg-o) {};
|
|
{
|
|
\dottriangle{(o.base east)}{o}{}{5}{4}{};
|
|
}
|
|
|
|
\draw (dottriangle-tc-o) edge[->,>=stealth,bend right,thick,green!30!black] (dottriangle-tc-ib);
|
|
;
|
|
\end{tikzpicture}\\
|
|
%\end{figure}
|
|
|
|
\definecolor{indianred}{rgb}{0.8, 0.36, 0.36}
|
|
|
|
$
|
|
\colorbox{lightgray!50}{
|
|
\begin{tabular}{@{}l@{}}
|
|
$\transfer{\intra}{\varswitch}{\lambda_i} =
|
|
\displaystyle (\intra \setminus o_i) \oplus \{ v \mapsto dep_i\}$
|
|
\\
|
|
where \\
|
|
$dep_i = [\colorbox{indianred}{$C_1 \mapsto \bot;$} \ldots; \colorbox{green!50!black!30!white}{$C_i \mapsto \intra(o_i);$} \ldots; \colorbox{indianred}{$C_n \mapsto \bot$}]$
|
|
\end{tabular}}
|
|
%\bottomrule
|
|
$ \\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Applying the Variant Switch Equation}
|
|
\end{figure}
|
|
|
|
\definecolor{indianred}{rgb}{0.8, 0.36, 0.36}
|
|
|
|
\begin{figure}[h]\centering
|
|
\begin{tabular}{c}
|
|
\toprule
|
|
\resizebox{0.99\textwidth}{!}{%
|
|
%% \begin{tikzpicture}
|
|
%% [scale=0.6, auto]
|
|
%% \node[vertex] (n1) at (10,14) {\emph{threads := p.threads}};
|
|
%% \node[vertex] (n2) at (10,11) {\emph{tio := threads[i]}};
|
|
%% \node[vertex] (n3) at (10,8) {\emph{switch(tio) as [ti$\arrowvert\;$]}};
|
|
|
|
%% \node (n4) [draw=red!50!black, circle,fill=lightgray!50, minimum size=30pt, inner sep =0pt] at(8,5.5) {\emph{true}};
|
|
%% \draw[draw=red!50!black] (8,5.5) circle(20pt);
|
|
|
|
%% \node (n5) [draw=red!50!black, circle,fill=lightgray!50, minimum size=30pt, inner sep =0pt] at(12,5.5) {\emph{None}};
|
|
%% \draw[draw=red!50!black] (12,5.5) circle(20pt);
|
|
|
|
%% \foreach \from/\to in {n1/n2,n2/n3,n3/n4,n3/n5}{
|
|
%% \draw[edge] (\from) -- (\to);
|
|
%% }
|
|
|
|
%% \draw (n2.-30) edge[semithick,->,bend left,in=120] (n5.30);
|
|
|
|
%% \node(n8) [draw=indianred!50, fill = indianred!50, scale=0.7] at (17.5, 4) {
|
|
%% \textrm{thread(p, i) $\to$ [true: ti $\ver$ None]}};
|
|
|
|
%% \node(n9)[draw=burg, scale = 0.8] at (15.75,5.5) {
|
|
%% \begin{tabular}{c}
|
|
%% $ \mathit{Unreachable} $\\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \node(d2) [draw=caribbeangreen, scale=0.8] at (2.5,8) {
|
|
%% \begin{tabular}{ccc}
|
|
%% tio & $\mapsto$ & [Some $\mapsto \top$; None $\mapsto \bot$] \\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \node(d1) [draw=caribbeangreen, scale = 0.9] at (3,5.5) {
|
|
%% \begin{tabular}{c}
|
|
%% ti $\mapsto$ $\top$\\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \end{tikzpicture}
|
|
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.2cm, semithick,
|
|
statt/.style={scale=0.7,fill=lightgray!50,draw=none,text=black,ellipse,inner sep=0pt,minimum width=.7cm,minimum height=.7cm}]
|
|
%
|
|
\node[statt] (N1) {\large {th := p.threads}};
|
|
\node[statt] (N2) [below=1cm of N1] {\large {tio := th[i]}};
|
|
\node[statt] (N3) [below left=of N2] {\large {$\boldsymbol{switch}$(tio) $\boldsymbol{as}$
|
|
[ $\ver$ti}]};
|
|
\node[statt] (N4) [below right=of N2]{\textsf{oob}};
|
|
\node[statt] (N5) [below left=of N3]{\lbtrue};
|
|
\node[statt] (N6) [below right=of N3]{\textsf{None}};
|
|
\path (N1) edge node[xshift=-0.95cm] {\large {\lbtrue}} (N2);
|
|
\path (N2) edge node[xshift=-0.8cm,yshift = 0.4cm] {\large{\lbtrue}} (N3);
|
|
\path (N2) edge node {\large {\lbfalse}} (N4);
|
|
\path (N3) edge node[left, anchor=south east] {\large {\textsf{Some}}} (N5);
|
|
\path (N3) edge node[right, anchor=south west] {\large {\textsf{None}}} (N6);
|
|
|
|
\node(n8)[draw=burg,dotted, scale = 0.7, right=of N4, xshift=-1.6cm] {
|
|
\begin{tabular}{c}
|
|
$ \mathit{Unreachable} $\\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(n9)[draw=burg,dotted, scale = 0.7, right=of N6] {
|
|
\begin{tabular}{c}
|
|
$ \mathit{Unreachable} $\\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(d2) [draw=caribbeangreen, scale=0.8, left=of N3] {
|
|
\begin{tabular}{ccc}
|
|
tio & $\mapsto$ & [Some $\mapsto \top$; None $\mapsto \bot$] \\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(d1) [draw=caribbeangreen, scale = 0.9, left=of N5] {
|
|
\begin{tabular}{c}
|
|
ti $\mapsto$ $\top$\\
|
|
\end{tabular}
|
|
};
|
|
\end{tikzpicture}
|
|
}\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Analysing Predicate \disp{thread} -- Variant Switch}
|
|
\label{intra:ss:switch}
|
|
\end{figure}
|
|
|
|
Taking all this into account, for the node corresponding to the variant switch,
|
|
we obtain the dependency shown in Figure~\ref{intra:ss:switch}. For the output
|
|
\disp{ti}, we depend entirely on the \disp{Some} constructor of the node's
|
|
input variant \disp{tio}, while the constructor \disp{None} is impossible.
|
|
|
|
Making a step further up the graph, we access the cell \disp{i} of the array
|
|
\disp{th} and apply the equation \snumber{12} given in Table~\ref{arrays}.
|
|
We begin by forgetting the dependency for the output \disp{tio},
|
|
since this is written. Since we only access the element \disp{i}, we map all
|
|
other cells to \emph{Nothing}, i.e. $\oslash$. To the dependency corresponding
|
|
to the \disp{i}-th cell, we forward the dependency we knew about \disp{tio},
|
|
since we depend on it to the extent to which the result of the access is needed.
|
|
|
|
\begin{figure}[!h]\centering
|
|
\begin{tabular}{c}
|
|
\toprule
|
|
\begin{tikzpicture}[
|
|
dot/.style={circle,inner sep=0pt,minimum size=1mm,fill=black},
|
|
]
|
|
|
|
\matrix[inner sep=0pt,ampersand replacement=\&] (mtop) {
|
|
\dottriangle{(0,0)}{1}{}{5}{4}{};
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm] (1oplus) at (dottriangle-boundingbox-1.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
{
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm,opacity=0] (1oplus) at (dottriangle-boundingbox-1.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
} \&
|
|
\node[resetinnersep, anchor=base,yshift=-.2cm] (dots2) {$\vphantom{x}\dots\vphantom{x}$};\&
|
|
\coordinate (myorigin);
|
|
\dottriangle{(0,0)}{ia}{}{5}{4}{};
|
|
%\alt<3->{
|
|
\node[anchor=west,inner sep=0pt] (ioplus) at (dottriangle-boundingbox-ia.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\vphantom{x}\;$};
|
|
\dottriangle{(ioplus.east |- myorigin)}{ib}{green!50!black}{5}{4}{fill=green!50!black!30!white};
|
|
{
|
|
\node[anchor=west,inner sep=0pt,opacity=0] (ioplus) at (dottriangle-boundingbox-ia.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\vphantom{x}\;$};
|
|
\dottriangle{(ioplus.east |- myorigin)}{ib}{green!50!black,opacity=0}{5}{4}{fill=green!50!black!30!white,opacity=0};
|
|
}\&
|
|
\node[resetinnersep, anchor=base,yshift=-.2cm] (dotsn1) {$\vphantom{x}\dots\vphantom{x}$};\&
|
|
% \dottriangle{(0,0)}{n1}{}{5}{4}{}; \&
|
|
\dottriangle{(0,0)}{n}{}{5}{4}{};
|
|
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm] (noplus) at (dottriangle-boundingbox-n.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
{
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm,opacity=0] (noplus) at (dottriangle-boundingbox-n.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
} \\
|
|
};
|
|
|
|
\draw (1oplus.east |- mtop.north) -- (1oplus.east |- mtop.south);
|
|
\draw (dots2.east |- mtop.north) -- (dots2.east |- mtop.south);
|
|
\draw (dottriangle-isep-ib.east |- mtop.north) -- (dottriangle-isep-ib.east |- mtop.south);
|
|
\draw (dotsn1.east |- mtop.north) -- (dotsn1.east |- mtop.south);
|
|
|
|
\node[resetinnersep,anchor=south] at (dottriangle-dot-1 |- mtop.north) (num1) {\footnotesize$1$};
|
|
\path ($(dottriangle-dot-ia)!.5!(dottriangle-dot-ib)$) |- node[resetinnersep,anchor=south] (numi) {\footnotesize$i$} (mtop.north);
|
|
\node[resetinnersep,anchor=south] at (dottriangle-dot-n |- mtop.north) (numn) {\footnotesize$n$};
|
|
|
|
\node[inner sep=0pt,fit=(num1) (numi) (numn)] (mnum) {};
|
|
\node[inner sep=0pt,fit=(mtop) (mnum),draw] (mall) {};
|
|
|
|
\draw (mtop.north west) -- (mtop.north east);
|
|
|
|
\node[anchor=base east,xshift=\defaultinnersep] (a) at (dottriangle-x-1.base -| mall.west) {$\mathit{th} =\vphantom{x}$};
|
|
|
|
\node[below left,yshift=-3mm] (o) at (mall.south west) {$\mathit{tio} =$};
|
|
|
|
\dottriangle{(o.base east)}{o}{red}{5}{4}{fill=red!30!white};
|
|
% cross out:
|
|
\node[draw=red,cross out,inner sep=0pt,minimum width=.75cm,minimum height=.55cm,thick,opacity=.5] at (dottriangle-bg-o) {};
|
|
{
|
|
\dottriangle{(o.base east)}{o}{}{5}{4}{};
|
|
}
|
|
|
|
% {
|
|
\node[draw=red,cross out,inner sep=0pt,minimum width=.75cm,minimum height=.55cm,thick,opacity=0] at (dottriangle-bg-ia) {};
|
|
|
|
\draw (dottriangle-tc-o) edge[->,>=stealth,bend right,thick,green!30!black] (dottriangle-tc-ib);
|
|
;
|
|
\end{tikzpicture}\\
|
|
|
|
|
|
\resizebox{0.95\textwidth}{!}{
|
|
\colorbox{lightgray!50}{
|
|
$\transfer{\intra}{\arrayget}{\lbtrue} = \displaystyle
|
|
\left \lgroup
|
|
\begin {array}{ll}
|
|
\colorbox{indianred}{$\killo{}{o} $}\; \oplus \;
|
|
\left \{
|
|
\begin{array}{lll}
|
|
i & \mapsto & \top \\%{green!50!black!30!white}
|
|
a & \mapsto & \colorbox{green!50!black!30!white}{$\langle \oslash \; \triangleright \; i: \intra(o) \rangle$}
|
|
\end{array} \right \}
|
|
& \begin{array}{l}
|
|
\textrm{when $ i \in \inputs \;$} \\
|
|
\end{array}
|
|
\\ \\
|
|
\colorbox{indianred}{$\killo{}{o}$} \; \oplus \;
|
|
\left \{
|
|
\begin{array} {lll}
|
|
i & \mapsto & \top \\
|
|
a & \mapsto &\colorbox{green!50!black!30!white}{$ \langle \intra(o) \vee \oslash \rangle$}
|
|
\end{array}
|
|
\right \}
|
|
& \begin{array}{l}
|
|
\textrm {when $ i \notin \inputs \;$} \\
|
|
\end{array}
|
|
\\
|
|
\end{array} \right.
|
|
$
|
|
}}\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Applying the Array Access Equation}
|
|
\label{fig:eq:array}
|
|
\end{figure}
|
|
|
|
We thus obtain a dependency stating that we depend only on the \disp{i}-th
|
|
cell of the array \disp{th}, for which only the constructor \disp{Some} is
|
|
possible and entirely needed. The cell's index \disp{i} is entirely needed as
|
|
well. The applied equation is shown in Figure~\ref{fig:eq:array} (since \disp{i}
|
|
is an input, we use the first case of the equation) and the
|
|
obtained results are shown in Figure~\ref{intra:ss:array}.
|
|
|
|
\begin{figure}[h]\centering
|
|
\begin{tabular}{@{}c@{}}
|
|
\toprule
|
|
\resizebox{0.99\textwidth}{!}{%
|
|
%% \begin{tikzpicture}
|
|
%% [scale=0.6, auto]
|
|
%% \node[vertex] (n1) at (10,14) {\emph{threads := p.threads}};
|
|
%% \node[vertex] (n2) at (10,11) {\emph{tio := threads[i]}};
|
|
%% \node[vertex] (n3) at (10,8) {\emph{switch(tio) as [ti$\arrowvert\;$]}};
|
|
|
|
%% \node (n4) [draw=red!50!black, circle,fill=lightgray!50, minimum size=30pt, inner sep =0pt] at(8,5.5) {\emph{true}};
|
|
%% \draw[draw=red!50!black] (8,5.5) circle(20pt);
|
|
|
|
%% \node (n5) [draw=red!50!black, circle,fill=lightgray!50, minimum size=30pt, inner sep =0pt] at(12,5.5) {\emph{None}};
|
|
%% \draw[draw=red!50!black] (12,5.5) circle(20pt);
|
|
|
|
%% \foreach \from/\to in {n1/n2,n2/n3,n3/n4,n3/n5}{
|
|
%% \draw[edge] (\from) -- (\to);
|
|
%% }
|
|
|
|
%% \draw (n2.-30) edge[semithick,->,bend left,in=120] (n5.30);
|
|
|
|
%% \node(n8) [draw=indianred!50, fill = indianred!50, scale=0.7] at (17.5, 4) {
|
|
%% \textrm{thread(p, i) $\to$ [true: ti $\ver$ None]}};
|
|
|
|
%% \node(n9)[draw=burg, scale = 0.8] at (15.75,5.5) {
|
|
%% \begin{tabular}{c}
|
|
%% $ \mathit{Unreachable} $\\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \node(d3) [draw=caribbeangreen, scale=0.8] at (1.4,10.8) {
|
|
%% \begin{tabular}{cll}
|
|
%% threads & $\mapsto $
|
|
%% & $\langle \oslash\;\; \triangleright\;$ i: [Some $\mapsto \top$; None $\mapsto \bot$] $\rangle$ \\
|
|
|
|
%% i & $\mapsto$ &$\top$\\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \node(d2) [draw=caribbeangreen, scale=0.8] at (2.5,8) {
|
|
%% \begin{tabular}{ccc}
|
|
%% tio & $\mapsto$ & [Some $\mapsto \top$; None $\mapsto \bot$] \\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \node(d1) [draw=caribbeangreen, scale = 0.9] at (3,5.5) {
|
|
%% \begin{tabular}{c}
|
|
%% ti $\mapsto$ $\top$\\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \end{tikzpicture}
|
|
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.2cm, semithick,
|
|
statt/.style={scale=0.7,fill=lightgray!50,draw=none,text=black,ellipse,inner sep=0pt,minimum width=.7cm,minimum height=.7cm}]
|
|
%
|
|
\node[statt] (N1) {\large {th := p.threads}};
|
|
\node[statt] (N2) [below=1cm of N1] {\large {tio := th[i]}};
|
|
\node[statt] (N3) [below left=of N2] {\large {$\boldsymbol{switch}$(tio) $\boldsymbol{as}$
|
|
[ $\ver$ti}]};
|
|
\node[statt] (N4) [below right=of N2]{\textsf{oob}};
|
|
\node[statt] (N5) [below left=of N3]{\lbtrue};
|
|
\node[statt] (N6) [below right=of N3]{\textsf{None}};
|
|
\path (N1) edge node[xshift=-0.95cm] {\large {\lbtrue}} (N2);
|
|
\path (N2) edge node[xshift=-0.8cm,yshift = 0.4cm] {\large{\lbtrue}} (N3);
|
|
\path (N2) edge node {\large {\lbfalse}} (N4);
|
|
\path (N3) edge node[left, anchor=south east] {\large {\textsf{Some}}} (N5);
|
|
\path (N3) edge node[right, anchor=south west] {\large {\textsf{None}}} (N6);
|
|
|
|
\node(n8)[draw=burg,dotted, scale = 0.7, right=of N4, xshift=-1.6cm] {
|
|
\begin{tabular}{c}
|
|
$ \mathit{Unreachable} $\\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(n9)[draw=burg,dotted, scale = 0.7, right=of N6] {
|
|
\begin{tabular}{c}
|
|
$ \mathit{Unreachable} $\\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(d3) [draw=caribbeangreen, scale=0.8, left=of N2] {
|
|
\begin{tabular}{cll}
|
|
th & $\mapsto $
|
|
& $\langle \oslash\;\; \triangleright\;$ i: [Some $\mapsto \top$; None $\mapsto \bot$] $\rangle$ \\
|
|
i & $\mapsto$ &$\top$\\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(d2) [draw=caribbeangreen, scale=0.8, left=of N3] {
|
|
\begin{tabular}{ccc}
|
|
tio & $\mapsto$ & [Some $\mapsto \top$; None $\mapsto \bot$] \\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(d1) [draw=caribbeangreen, scale = 0.9, left=of N5] {
|
|
\begin{tabular}{c}
|
|
ti $\mapsto$ $\top$\\
|
|
\end{tabular}
|
|
};
|
|
\end{tikzpicture}
|
|
}\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Analysing Predicate \disp{thread} -- Array Access}
|
|
\label{intra:ss:array}
|
|
\end{figure}
|
|
|
|
As a last step, we access the field \disp{threads} of the input process \disp{p}
|
|
and apply the equation \snumber{6} given in Table~\ref{structures} and illustrated in
|
|
Figure~\ref{intra:ss:faccess}.
|
|
As before, we forget the information for \disp{th}, the access result. We
|
|
map all other fields to $\oslash$ and we forward the dependency of the variable
|
|
\disp{th} to the dependency part of the field \disp{threads}.
|
|
|
|
\begin{figure}[!h]
|
|
\begin{tabular}{c}
|
|
\toprule
|
|
% \centering
|
|
\begin{tikzpicture}[
|
|
dot/.style={circle,inner sep=0pt,minimum size=1mm,fill=black},
|
|
% every node/.style={draw=black!50!white}
|
|
]
|
|
|
|
\matrix[inner sep=0pt,ampersand replacement=\&] (mtop) {
|
|
\node[resetinnersep,] (f1) {$f_1=$}; \dottriangle{(f1.base east)}{1}{}{3}{4}{};
|
|
%\alt<3->{
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm] (1oplus) at (dottriangle-boundingbox-1.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
{
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm,opacity=0] (1oplus) at (dottriangle-boundingbox-1.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
} \&
|
|
\&
|
|
\node[resetinnersep,] (f2) {$f_2=$}; \dottriangle{(f2.base east)}{2}{}{5}{4}{};
|
|
%\alt<3->{
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm] (2oplus) at (dottriangle-boundingbox-2.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
{
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm,opacity=0] (2oplus) at (dottriangle-boundingbox-2.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
} \\
|
|
};
|
|
|
|
\matrix[inner sep=0pt,below=0cm of mtop, ampersand replacement=\&] (mmid) {
|
|
\node[resetinnersep,] (fi) {$f_{threads}=\vphantom{x}$};
|
|
% \alt<2->{
|
|
% \dottriangle{([xshift=-\defaultinnersep]fi.base east)}{ia}{}{5}{3}{fill=red!30!white};
|
|
% }{
|
|
\dottriangle{([xshift=-\defaultinnersep]fi.base east)}{ia}{}{3}{5}{};
|
|
% }
|
|
\node[anchor=base west,inner sep=0pt] (ioplus) at (dottriangle-boundingbox-ia.east |- fi.base) {$\vphantom{x}\mathbin{\oplus}\vphantom{x}\;$};
|
|
\dottriangle{(ioplus.base east)}{ib}{green!50!black}{3}{5}{fill=green!50!black!30!white};
|
|
{
|
|
\node[anchor=base west,inner sep=0pt,opacity=0] (ioplus) at (dottriangle-boundingbox-ia.east |- fi.base) {$\vphantom{x}\mathbin{\oplus}\vphantom{x}\;$};
|
|
\dottriangle{(ioplus.base east)}{ib}{green!50!black,opacity=0}{3}{5}{fill=green!50!black!30!white,opacity=0};
|
|
}\\
|
|
};
|
|
|
|
\matrix[inner sep=0pt,below=0cm of mmid,ampersand replacement=\&] (mbot) {
|
|
\node[resetinnersep,] (fn1) {$f_{n-1}=$}; \dottriangle{(fn1.base east)}{n1}{}{4}{3}{};
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm] (n1oplus) at (dottriangle-boundingbox-n1.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
{
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm,opacity=0] (n1oplus) at (dottriangle-boundingbox-n1.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
} \&
|
|
\node[resetinnersep,] (fn) {$f_{n}=$}; \dottriangle{(fn.base east)}{n}{}{4}{5}{};
|
|
%\alt<3->{
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm] (noplus) at (dottriangle-boundingbox-n.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
{
|
|
\node[anchor=west,inner sep=1.3mm,xshift=-1.3mm,opacity=0] (noplus) at (dottriangle-boundingbox-n.east)
|
|
{$\vphantom{x}\mathbin{\oplus}\textcolor{green!50!black}{\oslash}$};
|
|
} \\
|
|
};
|
|
|
|
\node[inner sep=0pt,fit=(mtop) (mmid) (mbot),draw] (mall) {};
|
|
\draw (mtop.south -| mall.west) -- (mtop.south -| mall.east);
|
|
\draw (mmid.south -| mall.west) -- (mmid.south -| mall.east);
|
|
% \draw (f2.west |- mtop.north) -- (f2.west |- mtop.south);
|
|
\draw (1oplus.east |- mtop.north) -- (1oplus.east |- mtop.south);
|
|
% \draw (fn.west |- mbot.north) -- (fn.west |- mbot.south);
|
|
\draw (n1oplus.east |- mbot.north) -- (n1oplus.east |- mbot.south);
|
|
|
|
\node[anchor=base east,xshift=\defaultinnersep] (s) at (f1.base -| mall.west) {$p =\vphantom{x}$};
|
|
|
|
\node[below left,yshift=-3mm] (o) at (mall.south west) {$th =$};
|
|
|
|
|
|
\dottriangle{(o.base east)}{o}{red}{3}{5}{fill=red!30!white};
|
|
% cross out:
|
|
\node[draw=red,cross out,inner sep=0pt,minimum size=.55cm,thick,opacity=.5] at (dottriangle-bg-o) {};
|
|
{
|
|
\dottriangle{(o.base east)}{o}{}{3}{5}{};
|
|
}
|
|
|
|
\draw (dottriangle-tc-o) edge[->,>=stealth,bend right,thick,green!30!black] (dottriangle-tc-ib);
|
|
|
|
\end{tikzpicture}\\
|
|
|
|
\colorbox{lightgray!50}{
|
|
$\transfer{\intra}{\recordget}{\textrm{\textsf{\lbtrue}}} =
|
|
\displaystyle
|
|
\colorbox{indianred} {$\killo {}{o}$}
|
|
\; \oplus \; \{s \mapsto \{f_1 \mapsto \oslash; \ldots;
|
|
\colorbox{green!50!black!30!white} {$f_i \mapsto \intra(o);$}
|
|
\ldots; f_n \mapsto \oslash \} \}
|
|
$
|
|
}\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Applying the Field Access Equation}
|
|
\label{intra:ss:faccess}
|
|
\end{figure}
|
|
|
|
We thus obtain the dependency result shown in Figure~\ref{intra:ss:struct}.
|
|
This states that for the label \disp{true}, the output \disp{ti} depends only on
|
|
the \disp{i}-th cell of the field \disp{threads} of the input process \disp{p},
|
|
for which it depends entirely on the \disp{Some} constructor. Before returning
|
|
the predicate's final results, the analysis filters out any dependency
|
|
information referring to local variables and verifies that the invariant imposed
|
|
on dependency information related to arrays holds. Since the results refer only
|
|
to the inputs \disp{p} and \disp{i} and the index of the exceptional computed
|
|
dependency is an input, the invariant holds and the final result can be retrieved.
|
|
The final dependency results obtained for the \disp{thread} predicate on the exit
|
|
label \disp{true} are identical to the ones that we were targeting and that were
|
|
depicted in Figure~\ref{ex:res:thread}. For readability considerations, for
|
|
structures such as the input process \disp{p}, we omit dependencies on fields
|
|
mapped to $\oslash$. We maintain this convention throughout the rest of this
|
|
chapter, and thus any field of a structure that is omitted from a dependency
|
|
summary should be interpreted as being mapped to $\oslash$, i.e. \emph{nothing}.
|
|
|
|
%de sters
|
|
%pana aici
|
|
|
|
\begin{figure}[htbp]\centering
|
|
\begin{tabular}{c}
|
|
\toprule
|
|
\resizebox{0.99\textwidth}{!}{%
|
|
%% \begin{tikzpicture}
|
|
%% [scale=0.6, auto]
|
|
%% \node[vertex] (n1) at (10,14) {\emph{threads := p.threads}};
|
|
%% \node[vertex] (n2) at (10,11) {\emph{tio := threads[i]}};
|
|
%% \node[vertex] (n3) at (10,8) {\emph{switch(tio) as [ti$\arrowvert\;$]}};
|
|
|
|
%% \node (n4) [draw=red!50!black, circle,fill=lightgray!50, minimum size=30pt, inner sep =0pt] at(8,5.5) {\emph{true}};
|
|
%% \draw[draw=red!50!black] (8,5.5) circle(20pt);
|
|
|
|
%% \node (n5) [draw=red!50!black, circle,fill=lightgray!50, minimum size=30pt, inner sep =0pt] at(12,5.5) {\emph{None}};
|
|
%% \draw[draw=red!50!black] (12,5.5) circle(20pt);
|
|
|
|
%% \foreach \from/\to in {n1/n2,n2/n3,n3/n4,n3/n5}{
|
|
%% \draw[edge] (\from) -- (\to);
|
|
%% }
|
|
|
|
%% \draw (n2.-30) edge[semithick,->,bend left,in=120] (n5.30);
|
|
|
|
%% \node(n8) [draw=indianred!50, fill = indianred!50, scale=0.7] at (17.5, 4) {
|
|
%% \textrm{thread(p, i) $\to$ [true: ti $\ver$ None]}};
|
|
|
|
%% \node(n9)[draw=burg, scale = 0.8] at (15.75,5.5) {
|
|
%% \begin{tabular}{c}
|
|
%% $ \mathit{Unreachable} $\\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \node(d4) [draw=caribbeangreen, scale=0.7] at (0.6, 14) {
|
|
%% \begin{tabular}{lll}
|
|
%% p & $\mapsto $
|
|
%% & \{ threads $\mapsto$ $\langle \oslash\;\; \triangleright\; $ i:
|
|
%% [Some $\mapsto \top$; \textrm{None $\mapsto \bot$}]$\rangle\}$ \\
|
|
%% i & $\mapsto$ & $\top$ \\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \node(d3) [draw=caribbeangreen, scale=0.8] at (1.4,10.8) {
|
|
%% \begin{tabular}{cll}
|
|
%% threads & $\mapsto $
|
|
%% & $\langle \oslash\;\; \triangleright\;$ i: [Some $\mapsto \top$; None $\mapsto \bot$] $\rangle$ \\
|
|
|
|
%% i & $\mapsto$ &$\top$\\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \node(d2) [draw=caribbeangreen, scale=0.8] at (2.5,8) {
|
|
%% \begin{tabular}{ccc}
|
|
%% tio & $\mapsto$ & [Some $\mapsto \top$; None $\mapsto \bot$] \\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \node(d1) [draw=caribbeangreen, scale = 0.9] at (3,5.5) {
|
|
%% \begin{tabular}{c}
|
|
%% ti $\mapsto$ $\top$\\
|
|
%% \end{tabular}
|
|
%% };
|
|
|
|
%% \end{tikzpicture}
|
|
|
|
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.2cm, semithick,
|
|
statt/.style={scale=0.7,fill=lightgray!50,draw=none,text=black,ellipse,inner sep=0pt,minimum width=.7cm,minimum height=.7cm}]
|
|
%
|
|
\node[statt] (N1) {\large {th := p.threads}};
|
|
\node[statt] (N2) [below=1cm of N1] {\large {tio := th[i]}};
|
|
\node[statt] (N3) [below left=of N2] {\large {$\boldsymbol{switch}$(tio) $\boldsymbol{as}$
|
|
[ $\ver$ti}]};
|
|
\node[statt] (N4) [below right=of N2]{\textsf{oob}};
|
|
\node[statt] (N5) [below left=of N3]{\lbtrue};
|
|
\node[statt] (N6) [below right=of N3]{\textsf{None}};
|
|
\path (N1) edge node[xshift=-0.95cm] {\large {\lbtrue}} (N2);
|
|
\path (N2) edge node[xshift=-0.8cm,yshift = 0.4cm] {\large{\lbtrue}} (N3);
|
|
\path (N2) edge node {\large {\lbfalse}} (N4);
|
|
\path (N3) edge node[left, anchor=south east] {\large {\textsf{Some}}} (N5);
|
|
\path (N3) edge node[right, anchor=south west] {\large {\textsf{None}}} (N6);
|
|
|
|
\node(n8)[draw=burg,dotted, scale = 0.7, right=of N4, xshift=-1.6cm] {
|
|
\begin{tabular}{c}
|
|
$ \mathit{Unreachable} $\\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(n9)[draw=burg,dotted, scale = 0.7, right=of N6] {
|
|
\begin{tabular}{c}
|
|
$ \mathit{Unreachable} $\\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(d4) [draw=caribbeangreen, scale=0.7, left=of N1] {
|
|
\begin{tabular}{lll}
|
|
p & $\mapsto $
|
|
& \{ threads $\mapsto$ $\langle \oslash\;\; \triangleright\; $ i:
|
|
[Some $\mapsto \top$; \textrm{None $\mapsto \bot$}]$\rangle\}$ \\
|
|
i & $\mapsto$ & $\top$ \\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(d3) [draw=caribbeangreen, scale=0.8, left=of N2] {
|
|
\begin{tabular}{cll}
|
|
th & $\mapsto $
|
|
& $\langle \oslash\;\; \triangleright\;$ i: [Some $\mapsto \top$; None $\mapsto \bot$] $\rangle$ \\
|
|
|
|
i & $\mapsto$ &$\top$\\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(d2) [draw=caribbeangreen, scale=0.8, left=of N3] {
|
|
\begin{tabular}{ccc}
|
|
tio & $\mapsto$ & [Some $\mapsto \top$; None $\mapsto \bot$] \\
|
|
\end{tabular}
|
|
};
|
|
|
|
\node(d1) [draw=caribbeangreen, scale = 0.9, left=of N5] {
|
|
\begin{tabular}{c}
|
|
ti $\mapsto$ $\top$\\
|
|
\end{tabular}
|
|
};
|
|
\end{tikzpicture}
|
|
}\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Analysing Predicate \disp{thread} -- Field Access}
|
|
\label{intra:ss:struct}
|
|
\end{figure}
|
|
|
|
|
|
\subsection{An inter-procedural extension}
|
|
|
|
\section{Correlation analysis}
|
|
|
|
\subsection{Introductory example}
|
|
|
|
\subsection{Correlations as partial equivalence relations}
|
|
|
|
\subsection{Correlation analysis}
|
|
|
|
\section{Experimental evaluation}
|
|
|
|
\section{Related work}
|
|
|
|
\section{Conclusions}
|
|
|
|
\bibliographystyle{alpha}
|
|
\bibliography{biblio}
|
|
|
|
\end{document}
|