This commit is contained in:
monsterkodi 2016-08-08 23:16:40 +02:00
parent 04808a0076
commit f2721706c8
9 changed files with 487 additions and 25 deletions

View File

@ -1,5 +1,8 @@
# level design by Michael Abel
KQuaternion = require '../lib/quaternion'
KVector = require '../lib/vector'
module.exports =
name: "plate"
scheme: "blue_scheme"
@ -13,7 +16,7 @@ module.exports =
player:
coordinates: [3,2,1]
nostatus: 0
orientation: KQuaternion.rotationAroundVector(270, KVector(1,0,0))
orientation: KQuaternion.rotationAroundVector(270, KVector(1,0,0))
exits: [
name: "exit"
active: 1

148
coffee/lib/KQuaternion.h Executable file
View File

@ -0,0 +1,148 @@
/*
* KQuaternion.h
* kodisein
*/
#ifndef __KQuaternion
#define __KQuaternion
#include "KVector.h"
#include "KMatrix.h"
#include <float.h>
// --------------------------------------------------------------------------------------------------------
// --------------------------------------------------------------------------------------------------------
class KQuaternion
{
public:
float w, x, y, z;
KQuaternion ( float _w = 1.0, float _x = 0.0, float _y = 0.0, float _z = 0.0 )
{
w = _w; x = _x; y = _y; z = _z;
}
KQuaternion ( const KQuaternion & q ) { w = q.w; x = q.x; y = q.y; z = q.z; }
KQuaternion ( const KVector & v ) { w = 0.0; x = v[X]; y = v[Y]; z = v[Z]; }
static KQuaternion rotationAroundVector ( float theta, const KVector & vector )
{
KVector v(vector);
v.normalize();
float t = DEG2RAD(theta)/2.0;
float s = sin(t);
return KQuaternion(cos(t), v[X]*s, v[Y]*s, v[Z]*s).normalize();
}
KVector rotate ( const KVector & v ) const
{
KQuaternion result = (*this) * KQuaternion(v) * this->getConjugate();
return KVector(result.x, result.y, result.z);
}
KQuaternion & normalize ()
{
float l = sqrt(w*w + x*x + y*y + z*z);
if (l != 0.0)
{
w /= l; x /= l; y /= l; z /= l;
}
return (*this);
}
KQuaternion & invert ()
{
float l = sqrt(w*w + x*x + y*y + z*z);
if (l != 0.0)
{
w /= l; x = -x/l; y = -y/l; z = -z/l;
}
return (*this);
}
void reset () { w=1.0; x=y=z=0.0; }
KQuaternion & conjugate () { x = -x; y = -y; z = -z; return (*this); }
KQuaternion getNormal () const { return KQuaternion(*this).normalize(); }
KQuaternion getConjugate () const { return KQuaternion(*this).conjugate(); }
KQuaternion getInverse () const { return KQuaternion(*this).invert(); }
float length () const { return sqrt(w*w + x*x + y*y + z*z); }
void glRotate () const { KMatrix(*this).glMultMatrix(); }
KQuaternion slerp ( const KQuaternion & quat, float t ) const;
operator KVector() const { return KVector(x, y, z); }
KQuaternion & operator += ( float f ) { w += f; return(*this); }
KQuaternion & operator -= ( float f ) { w -= f; return(*this); }
KQuaternion & operator *= ( float f ) { w *= f; x *= f; y *= f; z *= f; return(*this); }
KQuaternion & operator /= ( float f ) { w /= f; x /= f; y /= f; z /= f; return(*this); }
KQuaternion & operator += ( const KQuaternion & quat )
{
w += quat.w; x += quat.x; y += quat.y; z += quat.z;
return (*this);
}
KQuaternion & operator -= ( const KQuaternion & quat )
{
w -= quat.w; x -= quat.x; y -= quat.y; z -= quat.z;
return (*this);
}
KQuaternion & operator *= ( const KQuaternion & quat )
{
float A, B, C, D, E, F, G, H;
A = (w + x)*(quat.w + quat.x);
B = (z - y)*(quat.y - quat.z);
C = (w - x)*(quat.y + quat.z);
D = (y + z)*(quat.w - quat.x);
E = (x + z)*(quat.x + quat.y);
F = (x - z)*(quat.x - quat.y);
G = (w + y)*(quat.w - quat.z);
H = (w - y)*(quat.w + quat.z);
w = B +(-E - F + G + H)/2;
x = A - (E + F + G + H)/2;
y = C + (E - F + G - H)/2;
z = D + (E - F - G + H)/2;
return (*this);
}
KQuaternion operator * ( const KQuaternion & quat ) const
{
return (KQuaternion(*this) *= quat);
}
};
// --------------------------------------------------------------------------------------------------------
inline KQuaternion operator - (const KQuaternion & q)
{
return KQuaternion(-q.w,-q.x,-q.y,-q.z);
}
// --------------------------------------------------------------------------------------------------------
inline KQuaternion operator * ( float f, const KQuaternion & quat )
{
KQuaternion result(quat);
result *= f;
return result;
}
// --------------------------------------------------------------------------------------------------------
inline bool operator == (const KQuaternion & lquat, const KQuaternion & rquat)
{
return ((rquat.w == lquat.w) && (rquat.x == lquat.x) &&
(rquat.y == lquat.y) && (rquat.z == lquat.z));
}
// --------------------------------------------------------------------------------------------------------
inline bool operator != (const KQuaternion & lquat, const KQuaternion & rquat)
{
return(!(lquat == rquat));
}
#endif

12
coffee/lib/class.coffee Normal file
View File

@ -0,0 +1,12 @@
# 0000000 000 0000000 0000000 0000000
# 000 000 000 000 000 000
# 000 000 000000000 0000000 0000000
# 000 000 000 000 000 000
# 0000000 0000000 000 000 0000000 0000000
class Class
constructor: () ->
module.exports = Class

View File

@ -0,0 +1,15 @@
# 00000000 0000000 0000000 000 000000000 000 0000000 000 000
# 000 000 000 000 000 000 000 000 000 000 0000 000
# 00000000 000 000 0000000 000 000 000 000 000 000 0 000
# 000 000 000 000 000 000 000 000 000 000 0000
# 000 0000000 0000000 000 000 000 0000000 000 000
class Position
constructor: (@x=0, @y=0) ->
plus: (s) -> new Position @w+s.w,@h+s.h
minus: (s) -> new Position @w-s.w,@h-s.h
eql: (s) -> @x == s.x and @y == s.y
module.exports = Position

View File

@ -0,0 +1,137 @@
# 0000000 000 000 0000000 000000000 00000000 00000000 000 000 000 0000000 000 000
# 000 000 000 000 000 000 000 000 000 000 0000 000 000 000 000 0000 000
# 000 00 00 000 000 000000000 000 0000000 0000000 000 0 000 000 000 000 000 0 000
# 000 0000 000 000 000 000 000 000 000 000 000 0000 000 000 000 000 0000
# 00000 00 0000000 000 000 000 00000000 000 000 000 000 000 0000000 000 000
Vector = require './vector'
class Quaternion
constructor: (@w=1, @x=0, @y=0, @z=0) ->
if @w instanceof Vector
@x = @w.x
@y = @w.y
@z = @w.z
@w = 0
else if @w instanceof Quaternion
@x = @w.x
@y = @w.y
@z = @w.z
@w = @w.w
@rotationAroundVector: (theta, vector) ->
v = new Vector vector
v.normalize()
t = Vector.DEG2RAD(theta)/2.0
s = Math.sin(t)
new Quaternion(Math.cos(t), v.x*s, v.y*s, v.z*s).normalize()
add: (quat) ->
@w += quat.w
@x += quat.x
@y += quat.y
@z += quat.z
@
sub: (quat) ->
@w -= quat.w
@x -= quat.x
@y -= quat.y
@z -= quat.z
@
rotate: (v) ->
qv = new Quaternion v
rq = @mul qv.mul @getConjugate()
new Vector rq.x, rq.y, rq.z
normalize: ->
l = Math.sqrt(w*w + x*x + y*y + z*z)
if l != 0.0
w /= l; x /= l; y /= l; z /= l
@
invert: ->
l = Math.sqrt(w*w + x*x + y*y + z*z)
if l != 0.0
w /= l; x = -x/l; y = -y/l; z = -z/l
@
reset: ->
@x=@y=@z=0
@w=1.0
@
conjugate: ->
@x = -@x
@y = -@y
@z = -@z
@
getNormal: -> new Quaternion(@).normalize()
getConjugate: -> new Quaternion(@).conjugate()
getInverse: -> new Quaternion(@).invert()
neg: -> new Quaternion -@w,-@x,-@y,-@z
vector: -> new Vector @x, @y, @z
length: -> Math.sqrt @w*@w + @x*@x + @y*@y + @z*@z
eql: (q) -> @w==q.w and @x=q.x and @y==q.y and @z==q.z
# glRotate () const { KMatrix(*this).glMultMatrix(); }
# Quaternion & operator += ( float f ) { w += f; return(*this); }
# Quaternion & operator -= ( float f ) { w -= f; return(*this); }
# Quaternion & operator *= ( float f ) { w *= f; x *= f; y *= f; z *= f; return(*this); }
# Quaternion & operator /= ( float f ) { w /= f; x /= f; y /= f; z /= f; return(*this); }
mul: (quatOrScalar) ->
if quatOrScalar instanceof Quaternion
quat = quatOrScalar
A = (@w + @x)*(quat.w + quat.x)
B = (@z - @y)*(quat.y - quat.z)
C = (@w - @x)*(quat.y + quat.z)
D = (@y + @z)*(quat.w - quat.x)
E = (@x + @z)*(quat.x + quat.y)
F = (@x - @z)*(quat.x - quat.y)
G = (@w + @y)*(quat.w - quat.z)
H = (@w - @y)*(quat.w + quat.z)
new Quaternion B +(-E - F + G + H)/2,
A - (E + F + G + H)/2,
C + (E - F + G - H)/2,
D + (E - F - G + H)/2
else
new Quaternion @w*f, @x*f, @y*f, z*f
slerp: (quat, t) ->
to1 = [0,0,0,0]
cosom = @x * quat.x + @y * quat.y + @z * quat.z + @w * quat.w # calc cosine
if cosom < 0 # adjust signs (if necessary)
cosom = -cosom
to1[0] = -quat.x
to1[1] = -quat.y
to1[2] = -quat.z
to1[3] = -quat.w
else
to1[0] = quat.x
to1[1] = quat.y
to1[2] = quat.z
to1[3] = quat.w
if (1.0 - cosom) > 0.001 # calculate coefficients
omega = Math.acos(cosom) # standard case (slerp)
sinom = Math.sin(omega)
scale0 = Math.sin((1.0 - t) * omega) / sinom
scale1 = Math.sin(t * omega) / sinom
else # "from" and "to" quaternions are very close -> we can do a linear interpolation
scale0 = 1.0 - t
scale1 = t
new Quaternion scale0 * w + scale1 * to1[3],
scale0 * x + scale1 * to1[0],
scale0 * y + scale1 * to1[1],
scale0 * z + scale1 * to1[2]
module.exports = Quaternion

19
coffee/lib/size.coffee Normal file
View File

@ -0,0 +1,19 @@
# 0000000 000 0000000 00000000
# 000 000 000 000
# 0000000 000 000 0000000
# 000 000 000 000
# 0000000 000 0000000 00000000
class Size
constructor: (@w, @h) ->
@x = @w
@y = @h
div: (d) -> new Size parseInt(@w/d), parseInt(@h/d)
mul: (d) -> new Size parseInt(@w*d), parseInt(@h*d)
minus: (s) -> new Size @w-s.w,@h-s.h
plus: (s) -> new Size @w+s.w,@h+s.h
eql: (s) -> @w == s.w and @h == s.h
module.exports = Size

111
coffee/lib/vector.coffee Normal file
View File

@ -0,0 +1,111 @@
# 000 000 00000000 0000000 000000000 0000000 00000000
# 000 000 000 000 000 000 000 000 000
# 000 000 0000000 000 000 000 000 0000000
# 000 000 000 000 000 000 000 000
# 0 00000000 0000000 000 0000000 000 000
#define kMinMax(a,b,c) (kMax((a), kMin((b), (c))))
#define kAbsMax(a,b) ((kAbs((a)) >= kAbs((b))) ? (a) : (b))
#define kAbsMin(a,b) ((kAbs((a)) < kAbs((b))) ? (a) : (b))
# X = 0
# SX = 0
# Y = 1
# Z = 2
# W = 3
# SY = 5
# SZ = 10
# TX = 12
# TY = 13
# TZ = 14
class Vector
constructor: (@x,@y,@z,@w) ->
if @x instanceof Vector
@copy @x
copy: (v) ->
@x = v.x
@y = v.y
@z = v.z
@w = v.w
@
normal: -> new Vector(@).normalize()
parallel: (n) ->
dot = @x*n.x + @y*n.y + @z*n.z
new Vector dot*n.x, dot*n.y, dot*n.z
# returns the projection of normalized vector n to vector that is perpendicular to this
perpendicular: (n) ->
dot = @x*n.x + @y*n.y + @z*n.z
new Vector @x-dot*n.x, @y-dot*n.y, @z-dot*n.z
reflect: (n) ->
dot = 2*(@x*n.x + @y*n.y + @z*n.z)
new Vector @x-dot*n.x, @y-dot*n.y, @z-dot*n.z
cross: (v) -> new Vector @y*v.z-@z*v.y, @z*v.x-@x*v.z, @x*v.y-@y*v.x
normalize: ->
l = @length()
if l
l = 1.0/l
@x *= l
@y *= l
@z *= l
@w *= l
@
xyperp: -> new Vector -@y, @x
round: -> new Vector rint(@x), rint(@y), rint(@z), @w
xyangle: (v) ->
thisXY = new Vector(@x, @y).normal()
otherXY = new Vector(v.x, v.y).normal()
if thisXY.xyperp() * otherXY >= 0
return Vector.RAD2DEG(Math.acos(thisXY * otherXY))
-Vector.RAD2DEG(Math.acos(thisXY * otherXY));
length: -> Math.sqrt @x*@x+@y*@y+@z*@z+@w*@w
angle: (v) -> Vector.RAD2DEG Math.acos @normal()*v.normal()
dot: (v) -> @x*v.x + @y*v.y + @z*v.z + @w*v.w
mul: (f) -> new Vector @x*f, @y*f, @z*f, @w*f
div: (d) -> new Vector @x/d, @y/d, @z/d, @w/d
plus: (v) -> new Vector @x+v.x, @y+v.y, @z+v.z, @w+v.w
minus: (v) -> new Vector @x-v.x, @y-v.y, @z-v.z, @w-v.w
add: (v) ->
@x += v.x
@y += v.y
@z += v.z
@w += v.w
@
sub: (v) ->
@x -= v.x
@y -= v.y
@z -= v.z
@w -= v.w
@
scale: (f) ->
@x *= f
@y *= f
@z *= f
@w *= f
@
reset: ->
@x = @y = @z = @w = 0
@
# glTranslate: () -> glTranslatef @x,@y,@z
@DEG2RAD: (d) -> Math.PI*d/180.0
@RAD2DEG: (r) -> r*180.0/Math.PI
module.exports = Vector

View File

@ -15,10 +15,7 @@ class Kiki extends Stage
constructor: (@view) -> super @view
start: ->
world = new KikiWorld()
log 'hello world'
@elem = document.createElement 'div'
@elem.style.position = 'absolute'
@elem.style.top = '0'
@ -85,6 +82,9 @@ class Kiki extends Stage
#
# @mesh = new THREE.Mesh @geom, @material
# @scene.add @mesh
world = new KikiWorld()
log 'hello world'
@animate()
@ -115,7 +115,7 @@ class Kiki extends Stage
resized: (w,h) ->
@aspect = w/h
@camera?.aspect = @aspect
@camera.updateProjectionMatrix()
@camera?.updateProjectionMatrix()
@renderer?.setSize w,h
module.exports = Kiki

View File

@ -16,27 +16,44 @@ class KikiWorld
# execfile (kikipy_path + "highscore.py")
# execfile (kikipy_path + "intro.py")
globals().rot0 = KQuaternion()
globals().rotz180 = KQuaternion.rotationAroundVector(180, KVector(0,0,1))
globals().rotz90 = KQuaternion.rotationAroundVector(90, KVector(0,0,1))
globals().roty270 = KQuaternion.rotationAroundVector(270, KVector(0,1,0))
globals().roty180 = KQuaternion.rotationAroundVector(180, KVector(0,1,0))
globals().roty90 = KQuaternion.rotationAroundVector(90, KVector(0,1,0))
globals().roty0 = KQuaternion.rotationAroundVector(0, KVector(0,1,0))
globals().rotx180 = KQuaternion.rotationAroundVector(180, KVector(1,0,0))
globals().rotx90 = KQuaternion.rotationAroundVector(90, KVector(1,0,0))
global.rot0 = new KQuaternion()
global.rotz180 = KQuaternion.rotationAroundVector(180, KVector(0,0,1))
global.rotz90 = KQuaternion.rotationAroundVector(90, KVector(0,0,1))
global.roty270 = KQuaternion.rotationAroundVector(270, KVector(0,1,0))
global.roty180 = KQuaternion.rotationAroundVector(180, KVector(0,1,0))
global.roty90 = KQuaternion.rotationAroundVector(90, KVector(0,1,0))
global.roty0 = KQuaternion.rotationAroundVector(0, KVector(0,1,0))
global.rotx180 = KQuaternion.rotationAroundVector(180, KVector(1,0,0))
global.rotx90 = KQuaternion.rotationAroundVector(90, KVector(1,0,0))
@levelList = [
"start", "steps", "move", "electro", "elevate", "throw", # intro
"gold", "jump", "escape", "gears", "gamma", "cube", "switch", "borg", # easy
"mini", "blocks", "bombs", "sandbox", "energy", "maze", "love",
"towers", "edge", "random", "plate", "nice", "entropy", # medium
"grasp", "fallen", "cheese", "invisimaze", "spiral", # owen hay's levels (TODO: sort in)
"slick", "bridge", "flower", "stones", "walls", "grid", # difficult
"rings", "core", "bronze", "pool", # difficult
"hidden", "church", "strange", "mesh", "columns", "machine", # tough
"neutron", "captured", "circuit", "regal", "conductor", "evil", # very hard
"mutants", # outro
# intro
"start", "steps", "move", "electro", "elevate", "throw",
# easy
"gold", "jump", "escape", "gears",
# "gamma",
"cube", "switch", "borg",
"mini",
# "blocks",
"bombs", "sandbox", "energy", "maze", "love",
# medium
"towers", "edge", "random", "plate", "nice", "entropy",
# owen hay's levels (TODO: sort in)
"grasp", "fallen", "cheese", "invisimaze", "spiral",
# difficult
"slick", "bridge", "flower", "stones", "walls", "grid",
"rings",
# "core",
"bronze", "pool",
# tough
"hidden", "church",
# "strange",
"mesh", "columns", "machine",
# very hard
# "neutron",
"captured", "circuit", "regal", "conductor", "evil",
# outro
"mutants",
]
@levelDict = {}