math
This commit is contained in:
parent
04808a0076
commit
f2721706c8
|
@ -1,5 +1,8 @@
|
|||
# level design by Michael Abel
|
||||
|
||||
KQuaternion = require '../lib/quaternion'
|
||||
KVector = require '../lib/vector'
|
||||
|
||||
module.exports =
|
||||
name: "plate"
|
||||
scheme: "blue_scheme"
|
||||
|
@ -13,7 +16,7 @@ module.exports =
|
|||
player:
|
||||
coordinates: [3,2,1]
|
||||
nostatus: 0
|
||||
orientation: KQuaternion.rotationAroundVector(270, KVector(1,0,0))
|
||||
orientation: KQuaternion.rotationAroundVector(270, KVector(1,0,0))
|
||||
exits: [
|
||||
name: "exit"
|
||||
active: 1
|
||||
|
|
148
coffee/lib/KQuaternion.h
Executable file
148
coffee/lib/KQuaternion.h
Executable file
|
@ -0,0 +1,148 @@
|
|||
/*
|
||||
* KQuaternion.h
|
||||
* kodisein
|
||||
*/
|
||||
|
||||
#ifndef __KQuaternion
|
||||
#define __KQuaternion
|
||||
|
||||
#include "KVector.h"
|
||||
#include "KMatrix.h"
|
||||
|
||||
#include <float.h>
|
||||
|
||||
// --------------------------------------------------------------------------------------------------------
|
||||
// --------------------------------------------------------------------------------------------------------
|
||||
class KQuaternion
|
||||
{
|
||||
public:
|
||||
|
||||
float w, x, y, z;
|
||||
|
||||
KQuaternion ( float _w = 1.0, float _x = 0.0, float _y = 0.0, float _z = 0.0 )
|
||||
{
|
||||
w = _w; x = _x; y = _y; z = _z;
|
||||
}
|
||||
|
||||
KQuaternion ( const KQuaternion & q ) { w = q.w; x = q.x; y = q.y; z = q.z; }
|
||||
KQuaternion ( const KVector & v ) { w = 0.0; x = v[X]; y = v[Y]; z = v[Z]; }
|
||||
|
||||
static KQuaternion rotationAroundVector ( float theta, const KVector & vector )
|
||||
{
|
||||
KVector v(vector);
|
||||
v.normalize();
|
||||
float t = DEG2RAD(theta)/2.0;
|
||||
float s = sin(t);
|
||||
return KQuaternion(cos(t), v[X]*s, v[Y]*s, v[Z]*s).normalize();
|
||||
}
|
||||
|
||||
KVector rotate ( const KVector & v ) const
|
||||
{
|
||||
KQuaternion result = (*this) * KQuaternion(v) * this->getConjugate();
|
||||
return KVector(result.x, result.y, result.z);
|
||||
}
|
||||
|
||||
KQuaternion & normalize ()
|
||||
{
|
||||
float l = sqrt(w*w + x*x + y*y + z*z);
|
||||
if (l != 0.0)
|
||||
{
|
||||
w /= l; x /= l; y /= l; z /= l;
|
||||
}
|
||||
return (*this);
|
||||
}
|
||||
|
||||
KQuaternion & invert ()
|
||||
{
|
||||
float l = sqrt(w*w + x*x + y*y + z*z);
|
||||
if (l != 0.0)
|
||||
{
|
||||
w /= l; x = -x/l; y = -y/l; z = -z/l;
|
||||
}
|
||||
return (*this);
|
||||
}
|
||||
|
||||
void reset () { w=1.0; x=y=z=0.0; }
|
||||
KQuaternion & conjugate () { x = -x; y = -y; z = -z; return (*this); }
|
||||
KQuaternion getNormal () const { return KQuaternion(*this).normalize(); }
|
||||
KQuaternion getConjugate () const { return KQuaternion(*this).conjugate(); }
|
||||
KQuaternion getInverse () const { return KQuaternion(*this).invert(); }
|
||||
float length () const { return sqrt(w*w + x*x + y*y + z*z); }
|
||||
void glRotate () const { KMatrix(*this).glMultMatrix(); }
|
||||
|
||||
KQuaternion slerp ( const KQuaternion & quat, float t ) const;
|
||||
|
||||
operator KVector() const { return KVector(x, y, z); }
|
||||
KQuaternion & operator += ( float f ) { w += f; return(*this); }
|
||||
KQuaternion & operator -= ( float f ) { w -= f; return(*this); }
|
||||
KQuaternion & operator *= ( float f ) { w *= f; x *= f; y *= f; z *= f; return(*this); }
|
||||
KQuaternion & operator /= ( float f ) { w /= f; x /= f; y /= f; z /= f; return(*this); }
|
||||
|
||||
KQuaternion & operator += ( const KQuaternion & quat )
|
||||
{
|
||||
w += quat.w; x += quat.x; y += quat.y; z += quat.z;
|
||||
return (*this);
|
||||
}
|
||||
|
||||
KQuaternion & operator -= ( const KQuaternion & quat )
|
||||
{
|
||||
w -= quat.w; x -= quat.x; y -= quat.y; z -= quat.z;
|
||||
return (*this);
|
||||
}
|
||||
|
||||
KQuaternion & operator *= ( const KQuaternion & quat )
|
||||
{
|
||||
float A, B, C, D, E, F, G, H;
|
||||
|
||||
A = (w + x)*(quat.w + quat.x);
|
||||
B = (z - y)*(quat.y - quat.z);
|
||||
C = (w - x)*(quat.y + quat.z);
|
||||
D = (y + z)*(quat.w - quat.x);
|
||||
E = (x + z)*(quat.x + quat.y);
|
||||
F = (x - z)*(quat.x - quat.y);
|
||||
G = (w + y)*(quat.w - quat.z);
|
||||
H = (w - y)*(quat.w + quat.z);
|
||||
|
||||
w = B +(-E - F + G + H)/2;
|
||||
x = A - (E + F + G + H)/2;
|
||||
y = C + (E - F + G - H)/2;
|
||||
z = D + (E - F - G + H)/2;
|
||||
|
||||
return (*this);
|
||||
}
|
||||
|
||||
KQuaternion operator * ( const KQuaternion & quat ) const
|
||||
{
|
||||
return (KQuaternion(*this) *= quat);
|
||||
}
|
||||
};
|
||||
|
||||
// --------------------------------------------------------------------------------------------------------
|
||||
inline KQuaternion operator - (const KQuaternion & q)
|
||||
{
|
||||
return KQuaternion(-q.w,-q.x,-q.y,-q.z);
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------------------------------------------
|
||||
inline KQuaternion operator * ( float f, const KQuaternion & quat )
|
||||
{
|
||||
KQuaternion result(quat);
|
||||
result *= f;
|
||||
return result;
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------------------------------------------
|
||||
inline bool operator == (const KQuaternion & lquat, const KQuaternion & rquat)
|
||||
{
|
||||
return ((rquat.w == lquat.w) && (rquat.x == lquat.x) &&
|
||||
(rquat.y == lquat.y) && (rquat.z == lquat.z));
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------------------------------------------
|
||||
inline bool operator != (const KQuaternion & lquat, const KQuaternion & rquat)
|
||||
{
|
||||
return(!(lquat == rquat));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
12
coffee/lib/class.coffee
Normal file
12
coffee/lib/class.coffee
Normal file
|
@ -0,0 +1,12 @@
|
|||
# 0000000 000 0000000 0000000 0000000
|
||||
# 000 000 000 000 000 000
|
||||
# 000 000 000000000 0000000 0000000
|
||||
# 000 000 000 000 000 000
|
||||
# 0000000 0000000 000 000 0000000 0000000
|
||||
|
||||
class Class
|
||||
|
||||
constructor: () ->
|
||||
|
||||
|
||||
module.exports = Class
|
15
coffee/lib/position.coffee
Normal file
15
coffee/lib/position.coffee
Normal file
|
@ -0,0 +1,15 @@
|
|||
# 00000000 0000000 0000000 000 000000000 000 0000000 000 000
|
||||
# 000 000 000 000 000 000 000 000 000 000 0000 000
|
||||
# 00000000 000 000 0000000 000 000 000 000 000 000 0 000
|
||||
# 000 000 000 000 000 000 000 000 000 000 0000
|
||||
# 000 0000000 0000000 000 000 000 0000000 000 000
|
||||
|
||||
class Position
|
||||
|
||||
constructor: (@x=0, @y=0) ->
|
||||
|
||||
plus: (s) -> new Position @w+s.w,@h+s.h
|
||||
minus: (s) -> new Position @w-s.w,@h-s.h
|
||||
eql: (s) -> @x == s.x and @y == s.y
|
||||
|
||||
module.exports = Position
|
137
coffee/lib/quaternion.coffee
Normal file
137
coffee/lib/quaternion.coffee
Normal file
|
@ -0,0 +1,137 @@
|
|||
|
||||
# 0000000 000 000 0000000 000000000 00000000 00000000 000 000 000 0000000 000 000
|
||||
# 000 000 000 000 000 000 000 000 000 000 0000 000 000 000 000 0000 000
|
||||
# 000 00 00 000 000 000000000 000 0000000 0000000 000 0 000 000 000 000 000 0 000
|
||||
# 000 0000 000 000 000 000 000 000 000 000 000 0000 000 000 000 000 0000
|
||||
# 00000 00 0000000 000 000 000 00000000 000 000 000 000 000 0000000 000 000
|
||||
|
||||
Vector = require './vector'
|
||||
|
||||
class Quaternion
|
||||
|
||||
constructor: (@w=1, @x=0, @y=0, @z=0) ->
|
||||
if @w instanceof Vector
|
||||
@x = @w.x
|
||||
@y = @w.y
|
||||
@z = @w.z
|
||||
@w = 0
|
||||
else if @w instanceof Quaternion
|
||||
@x = @w.x
|
||||
@y = @w.y
|
||||
@z = @w.z
|
||||
@w = @w.w
|
||||
|
||||
@rotationAroundVector: (theta, vector) ->
|
||||
v = new Vector vector
|
||||
v.normalize()
|
||||
t = Vector.DEG2RAD(theta)/2.0
|
||||
s = Math.sin(t)
|
||||
new Quaternion(Math.cos(t), v.x*s, v.y*s, v.z*s).normalize()
|
||||
|
||||
add: (quat) ->
|
||||
@w += quat.w
|
||||
@x += quat.x
|
||||
@y += quat.y
|
||||
@z += quat.z
|
||||
@
|
||||
|
||||
sub: (quat) ->
|
||||
@w -= quat.w
|
||||
@x -= quat.x
|
||||
@y -= quat.y
|
||||
@z -= quat.z
|
||||
@
|
||||
|
||||
rotate: (v) ->
|
||||
qv = new Quaternion v
|
||||
rq = @mul qv.mul @getConjugate()
|
||||
new Vector rq.x, rq.y, rq.z
|
||||
|
||||
normalize: ->
|
||||
l = Math.sqrt(w*w + x*x + y*y + z*z)
|
||||
if l != 0.0
|
||||
w /= l; x /= l; y /= l; z /= l
|
||||
@
|
||||
|
||||
invert: ->
|
||||
l = Math.sqrt(w*w + x*x + y*y + z*z)
|
||||
if l != 0.0
|
||||
w /= l; x = -x/l; y = -y/l; z = -z/l
|
||||
@
|
||||
|
||||
reset: ->
|
||||
@x=@y=@z=0
|
||||
@w=1.0
|
||||
@
|
||||
|
||||
conjugate: ->
|
||||
@x = -@x
|
||||
@y = -@y
|
||||
@z = -@z
|
||||
@
|
||||
|
||||
getNormal: -> new Quaternion(@).normalize()
|
||||
getConjugate: -> new Quaternion(@).conjugate()
|
||||
getInverse: -> new Quaternion(@).invert()
|
||||
neg: -> new Quaternion -@w,-@x,-@y,-@z
|
||||
vector: -> new Vector @x, @y, @z
|
||||
length: -> Math.sqrt @w*@w + @x*@x + @y*@y + @z*@z
|
||||
eql: (q) -> @w==q.w and @x=q.x and @y==q.y and @z==q.z
|
||||
|
||||
# glRotate () const { KMatrix(*this).glMultMatrix(); }
|
||||
|
||||
# Quaternion & operator += ( float f ) { w += f; return(*this); }
|
||||
# Quaternion & operator -= ( float f ) { w -= f; return(*this); }
|
||||
# Quaternion & operator *= ( float f ) { w *= f; x *= f; y *= f; z *= f; return(*this); }
|
||||
# Quaternion & operator /= ( float f ) { w /= f; x /= f; y /= f; z /= f; return(*this); }
|
||||
|
||||
mul: (quatOrScalar) ->
|
||||
if quatOrScalar instanceof Quaternion
|
||||
quat = quatOrScalar
|
||||
A = (@w + @x)*(quat.w + quat.x)
|
||||
B = (@z - @y)*(quat.y - quat.z)
|
||||
C = (@w - @x)*(quat.y + quat.z)
|
||||
D = (@y + @z)*(quat.w - quat.x)
|
||||
E = (@x + @z)*(quat.x + quat.y)
|
||||
F = (@x - @z)*(quat.x - quat.y)
|
||||
G = (@w + @y)*(quat.w - quat.z)
|
||||
H = (@w - @y)*(quat.w + quat.z)
|
||||
new Quaternion B +(-E - F + G + H)/2,
|
||||
A - (E + F + G + H)/2,
|
||||
C + (E - F + G - H)/2,
|
||||
D + (E - F - G + H)/2
|
||||
else
|
||||
new Quaternion @w*f, @x*f, @y*f, z*f
|
||||
|
||||
slerp: (quat, t) ->
|
||||
|
||||
to1 = [0,0,0,0]
|
||||
cosom = @x * quat.x + @y * quat.y + @z * quat.z + @w * quat.w # calc cosine
|
||||
|
||||
if cosom < 0 # adjust signs (if necessary)
|
||||
cosom = -cosom
|
||||
to1[0] = -quat.x
|
||||
to1[1] = -quat.y
|
||||
to1[2] = -quat.z
|
||||
to1[3] = -quat.w
|
||||
else
|
||||
to1[0] = quat.x
|
||||
to1[1] = quat.y
|
||||
to1[2] = quat.z
|
||||
to1[3] = quat.w
|
||||
|
||||
if (1.0 - cosom) > 0.001 # calculate coefficients
|
||||
omega = Math.acos(cosom) # standard case (slerp)
|
||||
sinom = Math.sin(omega)
|
||||
scale0 = Math.sin((1.0 - t) * omega) / sinom
|
||||
scale1 = Math.sin(t * omega) / sinom
|
||||
else # "from" and "to" quaternions are very close -> we can do a linear interpolation
|
||||
scale0 = 1.0 - t
|
||||
scale1 = t
|
||||
|
||||
new Quaternion scale0 * w + scale1 * to1[3],
|
||||
scale0 * x + scale1 * to1[0],
|
||||
scale0 * y + scale1 * to1[1],
|
||||
scale0 * z + scale1 * to1[2]
|
||||
|
||||
module.exports = Quaternion
|
19
coffee/lib/size.coffee
Normal file
19
coffee/lib/size.coffee
Normal file
|
@ -0,0 +1,19 @@
|
|||
# 0000000 000 0000000 00000000
|
||||
# 000 000 000 000
|
||||
# 0000000 000 000 0000000
|
||||
# 000 000 000 000
|
||||
# 0000000 000 0000000 00000000
|
||||
|
||||
class Size
|
||||
|
||||
constructor: (@w, @h) ->
|
||||
@x = @w
|
||||
@y = @h
|
||||
|
||||
div: (d) -> new Size parseInt(@w/d), parseInt(@h/d)
|
||||
mul: (d) -> new Size parseInt(@w*d), parseInt(@h*d)
|
||||
minus: (s) -> new Size @w-s.w,@h-s.h
|
||||
plus: (s) -> new Size @w+s.w,@h+s.h
|
||||
eql: (s) -> @w == s.w and @h == s.h
|
||||
|
||||
module.exports = Size
|
111
coffee/lib/vector.coffee
Normal file
111
coffee/lib/vector.coffee
Normal file
|
@ -0,0 +1,111 @@
|
|||
|
||||
# 000 000 00000000 0000000 000000000 0000000 00000000
|
||||
# 000 000 000 000 000 000 000 000 000
|
||||
# 000 000 0000000 000 000 000 000 0000000
|
||||
# 000 000 000 000 000 000 000 000
|
||||
# 0 00000000 0000000 000 0000000 000 000
|
||||
|
||||
#define kMinMax(a,b,c) (kMax((a), kMin((b), (c))))
|
||||
#define kAbsMax(a,b) ((kAbs((a)) >= kAbs((b))) ? (a) : (b))
|
||||
#define kAbsMin(a,b) ((kAbs((a)) < kAbs((b))) ? (a) : (b))
|
||||
|
||||
# X = 0
|
||||
# SX = 0
|
||||
# Y = 1
|
||||
# Z = 2
|
||||
# W = 3
|
||||
# SY = 5
|
||||
# SZ = 10
|
||||
# TX = 12
|
||||
# TY = 13
|
||||
# TZ = 14
|
||||
|
||||
class Vector
|
||||
|
||||
constructor: (@x,@y,@z,@w) ->
|
||||
if @x instanceof Vector
|
||||
@copy @x
|
||||
|
||||
copy: (v) ->
|
||||
@x = v.x
|
||||
@y = v.y
|
||||
@z = v.z
|
||||
@w = v.w
|
||||
@
|
||||
|
||||
normal: -> new Vector(@).normalize()
|
||||
|
||||
parallel: (n) ->
|
||||
dot = @x*n.x + @y*n.y + @z*n.z
|
||||
new Vector dot*n.x, dot*n.y, dot*n.z
|
||||
|
||||
# returns the projection of normalized vector n to vector that is perpendicular to this
|
||||
perpendicular: (n) ->
|
||||
dot = @x*n.x + @y*n.y + @z*n.z
|
||||
new Vector @x-dot*n.x, @y-dot*n.y, @z-dot*n.z
|
||||
|
||||
reflect: (n) ->
|
||||
dot = 2*(@x*n.x + @y*n.y + @z*n.z)
|
||||
new Vector @x-dot*n.x, @y-dot*n.y, @z-dot*n.z
|
||||
|
||||
cross: (v) -> new Vector @y*v.z-@z*v.y, @z*v.x-@x*v.z, @x*v.y-@y*v.x
|
||||
normalize: ->
|
||||
l = @length()
|
||||
if l
|
||||
l = 1.0/l
|
||||
@x *= l
|
||||
@y *= l
|
||||
@z *= l
|
||||
@w *= l
|
||||
@
|
||||
|
||||
xyperp: -> new Vector -@y, @x
|
||||
round: -> new Vector rint(@x), rint(@y), rint(@z), @w
|
||||
|
||||
xyangle: (v) ->
|
||||
thisXY = new Vector(@x, @y).normal()
|
||||
otherXY = new Vector(v.x, v.y).normal()
|
||||
if thisXY.xyperp() * otherXY >= 0
|
||||
return Vector.RAD2DEG(Math.acos(thisXY * otherXY))
|
||||
-Vector.RAD2DEG(Math.acos(thisXY * otherXY));
|
||||
|
||||
length: -> Math.sqrt @x*@x+@y*@y+@z*@z+@w*@w
|
||||
angle: (v) -> Vector.RAD2DEG Math.acos @normal()*v.normal()
|
||||
dot: (v) -> @x*v.x + @y*v.y + @z*v.z + @w*v.w
|
||||
|
||||
mul: (f) -> new Vector @x*f, @y*f, @z*f, @w*f
|
||||
div: (d) -> new Vector @x/d, @y/d, @z/d, @w/d
|
||||
plus: (v) -> new Vector @x+v.x, @y+v.y, @z+v.z, @w+v.w
|
||||
minus: (v) -> new Vector @x-v.x, @y-v.y, @z-v.z, @w-v.w
|
||||
|
||||
add: (v) ->
|
||||
@x += v.x
|
||||
@y += v.y
|
||||
@z += v.z
|
||||
@w += v.w
|
||||
@
|
||||
|
||||
sub: (v) ->
|
||||
@x -= v.x
|
||||
@y -= v.y
|
||||
@z -= v.z
|
||||
@w -= v.w
|
||||
@
|
||||
|
||||
scale: (f) ->
|
||||
@x *= f
|
||||
@y *= f
|
||||
@z *= f
|
||||
@w *= f
|
||||
@
|
||||
|
||||
reset: ->
|
||||
@x = @y = @z = @w = 0
|
||||
@
|
||||
|
||||
# glTranslate: () -> glTranslatef @x,@y,@z
|
||||
|
||||
@DEG2RAD: (d) -> Math.PI*d/180.0
|
||||
@RAD2DEG: (r) -> r*180.0/Math.PI
|
||||
|
||||
module.exports = Vector
|
|
@ -15,10 +15,7 @@ class Kiki extends Stage
|
|||
constructor: (@view) -> super @view
|
||||
|
||||
start: ->
|
||||
|
||||
world = new KikiWorld()
|
||||
log 'hello world'
|
||||
|
||||
|
||||
@elem = document.createElement 'div'
|
||||
@elem.style.position = 'absolute'
|
||||
@elem.style.top = '0'
|
||||
|
@ -85,6 +82,9 @@ class Kiki extends Stage
|
|||
#
|
||||
# @mesh = new THREE.Mesh @geom, @material
|
||||
# @scene.add @mesh
|
||||
|
||||
world = new KikiWorld()
|
||||
log 'hello world'
|
||||
|
||||
@animate()
|
||||
|
||||
|
@ -115,7 +115,7 @@ class Kiki extends Stage
|
|||
resized: (w,h) ->
|
||||
@aspect = w/h
|
||||
@camera?.aspect = @aspect
|
||||
@camera.updateProjectionMatrix()
|
||||
@camera?.updateProjectionMatrix()
|
||||
@renderer?.setSize w,h
|
||||
|
||||
module.exports = Kiki
|
||||
|
|
|
@ -16,27 +16,44 @@ class KikiWorld
|
|||
# execfile (kikipy_path + "highscore.py")
|
||||
# execfile (kikipy_path + "intro.py")
|
||||
|
||||
globals().rot0 = KQuaternion()
|
||||
globals().rotz180 = KQuaternion.rotationAroundVector(180, KVector(0,0,1))
|
||||
globals().rotz90 = KQuaternion.rotationAroundVector(90, KVector(0,0,1))
|
||||
globals().roty270 = KQuaternion.rotationAroundVector(270, KVector(0,1,0))
|
||||
globals().roty180 = KQuaternion.rotationAroundVector(180, KVector(0,1,0))
|
||||
globals().roty90 = KQuaternion.rotationAroundVector(90, KVector(0,1,0))
|
||||
globals().roty0 = KQuaternion.rotationAroundVector(0, KVector(0,1,0))
|
||||
globals().rotx180 = KQuaternion.rotationAroundVector(180, KVector(1,0,0))
|
||||
globals().rotx90 = KQuaternion.rotationAroundVector(90, KVector(1,0,0))
|
||||
global.rot0 = new KQuaternion()
|
||||
global.rotz180 = KQuaternion.rotationAroundVector(180, KVector(0,0,1))
|
||||
global.rotz90 = KQuaternion.rotationAroundVector(90, KVector(0,0,1))
|
||||
global.roty270 = KQuaternion.rotationAroundVector(270, KVector(0,1,0))
|
||||
global.roty180 = KQuaternion.rotationAroundVector(180, KVector(0,1,0))
|
||||
global.roty90 = KQuaternion.rotationAroundVector(90, KVector(0,1,0))
|
||||
global.roty0 = KQuaternion.rotationAroundVector(0, KVector(0,1,0))
|
||||
global.rotx180 = KQuaternion.rotationAroundVector(180, KVector(1,0,0))
|
||||
global.rotx90 = KQuaternion.rotationAroundVector(90, KVector(1,0,0))
|
||||
|
||||
@levelList = [
|
||||
"start", "steps", "move", "electro", "elevate", "throw", # intro
|
||||
"gold", "jump", "escape", "gears", "gamma", "cube", "switch", "borg", # easy
|
||||
"mini", "blocks", "bombs", "sandbox", "energy", "maze", "love",
|
||||
"towers", "edge", "random", "plate", "nice", "entropy", # medium
|
||||
"grasp", "fallen", "cheese", "invisimaze", "spiral", # owen hay's levels (TODO: sort in)
|
||||
"slick", "bridge", "flower", "stones", "walls", "grid", # difficult
|
||||
"rings", "core", "bronze", "pool", # difficult
|
||||
"hidden", "church", "strange", "mesh", "columns", "machine", # tough
|
||||
"neutron", "captured", "circuit", "regal", "conductor", "evil", # very hard
|
||||
"mutants", # outro
|
||||
# intro
|
||||
"start", "steps", "move", "electro", "elevate", "throw",
|
||||
# easy
|
||||
"gold", "jump", "escape", "gears",
|
||||
# "gamma",
|
||||
"cube", "switch", "borg",
|
||||
"mini",
|
||||
# "blocks",
|
||||
"bombs", "sandbox", "energy", "maze", "love",
|
||||
# medium
|
||||
"towers", "edge", "random", "plate", "nice", "entropy",
|
||||
# owen hay's levels (TODO: sort in)
|
||||
"grasp", "fallen", "cheese", "invisimaze", "spiral",
|
||||
# difficult
|
||||
"slick", "bridge", "flower", "stones", "walls", "grid",
|
||||
"rings",
|
||||
# "core",
|
||||
"bronze", "pool",
|
||||
# tough
|
||||
"hidden", "church",
|
||||
# "strange",
|
||||
"mesh", "columns", "machine",
|
||||
# very hard
|
||||
# "neutron",
|
||||
"captured", "circuit", "regal", "conductor", "evil",
|
||||
# outro
|
||||
"mutants",
|
||||
]
|
||||
|
||||
@levelDict = {}
|
||||
|
|
Loading…
Reference in New Issue
Block a user