297 lines
9.7 KiB
CoffeeScript
297 lines
9.7 KiB
CoffeeScript
|
|
# 0000000 000 000 0000000 000000000 00000000 00000000 000 000 000 0000000 000 000
|
|
# 000 000 000 000 000 000 000 000 000 000 0000 000 000 000 000 0000 000
|
|
# 000 00 00 000 000 000000000 000 0000000 0000000 000 0 000 000 000 000 000 0 000
|
|
# 000 0000 000 000 000 000 000 000 000 000 000 0000 000 000 000 000 0000
|
|
# 00000 00 0000000 000 000 000 00000000 000 000 000 000 000 0000000 000 000
|
|
|
|
log = require '../tools/log'
|
|
Vector = require './vector'
|
|
|
|
class Quaternion
|
|
|
|
constructor: (w=1, x=0, y=0, z=0) ->
|
|
if w instanceof Vector
|
|
@x = w.x
|
|
@y = w.y
|
|
@z = w.z
|
|
@w = 0
|
|
else if w instanceof Quaternion
|
|
@x = w.x
|
|
@y = w.y
|
|
@z = w.z
|
|
@w = w.w
|
|
else if Array.isArray w
|
|
@w = w[0]
|
|
@x = w[1]
|
|
@y = w[2]
|
|
@z = w[3]
|
|
else
|
|
@x = x
|
|
@y = y
|
|
@z = z
|
|
@w = w
|
|
if Number.isNaN @x
|
|
throw new Error
|
|
|
|
copy: -> new Quaternion @
|
|
clone: (q) ->
|
|
@x = q.x
|
|
@y = q.y
|
|
@z = q.z
|
|
@w = q.w
|
|
@
|
|
|
|
rounded: ->
|
|
minDist = 1000
|
|
minQuat = null
|
|
up = @rotate Vector.unitY
|
|
back = @rotate Vector.unitZ
|
|
for q in [ Quaternion.XupY
|
|
Quaternion.XupZ
|
|
Quaternion.XdownY
|
|
Quaternion.XdownZ
|
|
Quaternion.YupX
|
|
Quaternion.YupZ
|
|
Quaternion.YdownX
|
|
Quaternion.YdownZ
|
|
Quaternion.ZupX
|
|
Quaternion.ZupY
|
|
Quaternion.ZdownX
|
|
Quaternion.ZdownY
|
|
Quaternion.minusXupY
|
|
Quaternion.minusXupZ
|
|
Quaternion.minusXdownY
|
|
Quaternion.minusXdownZ
|
|
Quaternion.minusYupX
|
|
Quaternion.minusYupZ
|
|
Quaternion.minusYdownX
|
|
Quaternion.minusYdownZ
|
|
Quaternion.minusZupX
|
|
Quaternion.minusZupY
|
|
Quaternion.minusZdownX
|
|
Quaternion.minusZdownY
|
|
]
|
|
upDiff = 1 - up.dot q.rotate Vector.unitY
|
|
backDiff = 1 - back.dot q.rotate Vector.unitZ
|
|
l = upDiff + backDiff
|
|
if l < minDist
|
|
minDist = l
|
|
minQuat = q
|
|
if l < 0.0001
|
|
break
|
|
minQuat
|
|
|
|
round: -> @clone @normalize().rounded()
|
|
|
|
euler: -> [
|
|
Vector.RAD2DEG Math.atan2 2*(@w*@x+@y*@z), 1-2*(@x*@x+@y*@y)
|
|
Vector.RAD2DEG Math.asin 2*(@w*@y-@z*@x)
|
|
Vector.RAD2DEG Math.atan2 2*(@w*@z+@x*@y), 1-2*(@y*@y+@z*@z)]
|
|
|
|
add: (quat) ->
|
|
@w += quat.w
|
|
@x += quat.x
|
|
@y += quat.y
|
|
@z += quat.z
|
|
@
|
|
|
|
sub: (quat) ->
|
|
@w -= quat.w
|
|
@x -= quat.x
|
|
@y -= quat.y
|
|
@z -= quat.z
|
|
@
|
|
|
|
minus: (quat) -> @copy().sub quat
|
|
|
|
dot: (q) -> @x*q.x + @y*q.y + @z*q.z + @w*q.w
|
|
|
|
rotate: (v) ->
|
|
qv = new Quaternion v
|
|
rq = @mul qv.mul @getConjugate()
|
|
new Vector rq.x, rq.y, rq.z
|
|
|
|
normalize: ->
|
|
l = Math.sqrt @w*@w + @x*@x + @y*@y + @z*@z
|
|
if l != 0.0
|
|
@w /= l
|
|
@x /= l
|
|
@y /= l
|
|
@z /= l
|
|
@
|
|
|
|
invert: ->
|
|
l = Math.sqrt @w*@w + @x*@x + @y*@y + @z*@z
|
|
if l != 0.0
|
|
@w /= l
|
|
@x = -@x/l
|
|
@y = -@y/l
|
|
@z = -@z/l
|
|
@
|
|
|
|
isZero: -> @x==@y==@z==0 and @w==1
|
|
reset: ->
|
|
@x=@y=@z=0
|
|
@w=1
|
|
@
|
|
|
|
conjugate: ->
|
|
@x = -@x
|
|
@y = -@y
|
|
@z = -@z
|
|
@
|
|
|
|
getNormal: -> @copy().normalize()
|
|
getConjugate: -> @copy().conjugate()
|
|
getInverse: -> @copy().invert()
|
|
neg: -> new Quaternion -@w,-@x,-@y,-@z
|
|
vector: -> new Vector @x, @y, @z
|
|
length: -> Math.sqrt @w*@w + @x*@x + @y*@y + @z*@z
|
|
eql: (q) -> @w==q.w and @x=q.x and @y==q.y and @z==q.z
|
|
|
|
mul: (quatOrScalar) ->
|
|
if quatOrScalar instanceof Quaternion
|
|
quat = quatOrScalar
|
|
A = (@w + @x) * (quat.w + quat.x)
|
|
B = (@z - @y) * (quat.y - quat.z)
|
|
C = (@w - @x) * (quat.y + quat.z)
|
|
D = (@y + @z) * (quat.w - quat.x)
|
|
E = (@x + @z) * (quat.x + quat.y)
|
|
F = (@x - @z) * (quat.x - quat.y)
|
|
G = (@w + @y) * (quat.w - quat.z)
|
|
H = (@w - @y) * (quat.w + quat.z)
|
|
new Quaternion B + (-E - F + G + H)/2,
|
|
A - (E + F + G + H)/2,
|
|
C + (E - F + G - H)/2,
|
|
D + (E - F - G + H)/2
|
|
else
|
|
new Quaternion @w*f, @x*f, @y*f, z*f
|
|
|
|
slerp: (quat, t) ->
|
|
|
|
to1 = [0,0,0,0]
|
|
cosom = @x * quat.x + @y * quat.y + @z * quat.z + @w * quat.w # calc cosine
|
|
|
|
if cosom < 0 # adjust signs (if necessary)
|
|
cosom = -cosom
|
|
to1[0] = -quat.x
|
|
to1[1] = -quat.y
|
|
to1[2] = -quat.z
|
|
to1[3] = -quat.w
|
|
else
|
|
to1[0] = quat.x
|
|
to1[1] = quat.y
|
|
to1[2] = quat.z
|
|
to1[3] = quat.w
|
|
|
|
if (1.0 - cosom) > 0.001 # calculate coefficients
|
|
omega = Math.acos cosom # standard case (slerp)
|
|
sinom = Math.sin omega
|
|
scale0 = Math.sin((1.0 - t) * omega) / sinom
|
|
scale1 = Math.sin(t * omega) / sinom
|
|
else # "from" and "to" quaternions are very close -> we can do a linear interpolation
|
|
scale0 = 1.0 - t
|
|
scale1 = t
|
|
|
|
new Quaternion scale0 * @w + scale1 * to1[3],
|
|
scale0 * @x + scale1 * to1[0],
|
|
scale0 * @y + scale1 * to1[1],
|
|
scale0 * @z + scale1 * to1[2]
|
|
|
|
@rotationAroundVector: (theta, x,y,z) ->
|
|
v = new Vector x,y,z
|
|
v.normalize()
|
|
t = Vector.DEG2RAD(theta)/2.0
|
|
s = Math.sin t
|
|
(new Quaternion Math.cos(t), v.x*s, v.y*s, v.z*s).normalize()
|
|
|
|
@rotationFromEuler: (x,y,z) ->
|
|
x = Vector.DEG2RAD x
|
|
y = Vector.DEG2RAD y
|
|
z = Vector.DEG2RAD z
|
|
q=new Quaternion Math.cos(x/2) * Math.cos(y/2) * Math.cos(z/2) + Math.sin(x/2) * Math.sin(y/2) * Math.sin(z/2),
|
|
Math.sin(x/2) * Math.cos(y/2) * Math.cos(z/2) - Math.cos(x/2) * Math.sin(y/2) * Math.sin(z/2),
|
|
Math.cos(x/2) * Math.sin(y/2) * Math.cos(z/2) + Math.sin(x/2) * Math.cos(y/2) * Math.sin(z/2),
|
|
Math.cos(x/2) * Math.cos(y/2) * Math.sin(z/2) - Math.sin(x/2) * Math.sin(y/2) * Math.cos(z/2)
|
|
q.normalize()
|
|
|
|
@rot_0 = new Quaternion()
|
|
|
|
@rot_90_X = @rotationAroundVector 90, Vector.unitX
|
|
@rot_90_Y = @rotationAroundVector 90, Vector.unitY
|
|
@rot_90_Z = @rotationAroundVector 90, Vector.unitZ
|
|
@rot_180_X = @rotationAroundVector 180, Vector.unitX
|
|
@rot_180_Y = @rotationAroundVector 180, Vector.unitY
|
|
@rot_180_Z = @rotationAroundVector 180, Vector.unitZ
|
|
@rot_270_X = @rotationAroundVector 270, Vector.unitX
|
|
@rot_270_Y = @rotationAroundVector 270, Vector.unitY
|
|
@rot_270_Z = @rotationAroundVector 270, Vector.unitZ
|
|
|
|
@XupY = @rot_270_Y
|
|
@XupZ = @rot_90_X.mul @rot_270_Y
|
|
@XdownY = @rot_180_X.mul @rot_270_Y
|
|
@XdownZ = @rot_270_X.mul @rot_270_Y
|
|
|
|
@YupX = @rot_90_Y.mul @rot_90_X
|
|
@YupZ = @rot_90_X
|
|
@YdownX = @rot_270_Y.mul @rot_90_X
|
|
@YdownZ = @rot_180_Y.mul @rot_90_X
|
|
|
|
@ZupX = @rot_90_Z.mul @rot_180_X
|
|
@ZupY = @rot_180_Z.mul @rot_180_X
|
|
@ZdownX = @rot_270_Z.mul @rot_180_X
|
|
@ZdownY = @rot_180_X
|
|
|
|
@minusXupY = @rot_90_Y
|
|
@minusXupZ = @rot_90_X.mul @rot_90_Y
|
|
@minusXdownY = @rot_180_X.mul @rot_90_Y
|
|
@minusXdownZ = @rot_270_X.mul @rot_90_Y
|
|
|
|
@minusYupX = @rot_270_Y.mul @rot_270_X
|
|
@minusYupZ = @rot_180_Y.mul @rot_270_X
|
|
@minusYdownX = @rot_90_Y.mul @rot_270_X
|
|
@minusYdownZ = @rot_270_X
|
|
|
|
@minusZupX = @rot_270_Z
|
|
@minusZupY = @rot_0
|
|
@minusZdownX = @rot_90_Z
|
|
@minusZdownY = @rot_180_Z
|
|
|
|
@rot_0.name = 'rot_0'
|
|
@rot_90_X.name = 'rot_90_X'
|
|
@rot_90_Y.name = 'rot_90_Y'
|
|
@rot_90_Z.name = 'rot_90_Z'
|
|
@rot_180_X.name = 'rot_180_X'
|
|
@rot_180_Y.name = 'rot_180_Y'
|
|
@rot_180_Z.name = 'rot_180_Z'
|
|
@rot_270_X.name = 'rot_270_X'
|
|
@rot_270_Y.name = 'rot_270_Y'
|
|
@rot_270_Z.name = 'rot_270_Z'
|
|
|
|
@XupY.name = 'XupY'
|
|
@XupZ.name = 'XupZ'
|
|
@XdownY.name = 'XdownY'
|
|
@XdownZ.name = 'XdownZ'
|
|
@YupX.name = 'YupX'
|
|
@YupZ.name = 'YupZ'
|
|
@YdownX.name = 'YdownX'
|
|
@YdownZ.name = 'YdownZ'
|
|
@ZupX.name = 'ZupX'
|
|
@ZupY.name = 'ZupY'
|
|
@ZdownX.name = 'ZdownX'
|
|
@ZdownY.name = 'ZdownY'
|
|
@minusXupY.name = 'minusXupY'
|
|
@minusXupZ.name = 'minusXupZ'
|
|
@minusXdownY.name = 'minusXdownY'
|
|
@minusXdownZ.name = 'minusXdownZ'
|
|
@minusYupX.name = 'minusYupX'
|
|
@minusYupZ.name = 'minusYupZ'
|
|
@minusYdownX.name = 'minusYdownX'
|
|
@minusYdownZ.name = 'minusYdownZ'
|
|
@minusZupX.name = 'minusZupX'
|
|
@minusZupY.name = 'minusZupY'
|
|
@minusZdownX.name = 'minusZdownX'
|
|
@minusZdownY.name = 'minusZdownY'
|
|
|
|
module.exports = Quaternion |