add bool and nat examples; start eq-refl; need to fix app/eval

This commit is contained in:
Stephen Chang 2017-07-31 19:37:04 -04:00
parent 4e80959d12
commit 31bc8cebec
2 changed files with 134 additions and 92 deletions

View File

@ -7,7 +7,8 @@
(provide (rename-out [#%type *])
Π
;; = eq-refl eq-elim
= eq-refl
;;eq-elim
;; Nat Z S nat-ind
λ
#%app ann
@ -37,6 +38,8 @@
(define old-relation (current-typecheck-relation))
(current-typecheck-relation
(lambda (t1 t2)
;; (pretty-print (stx->datum t1))
;; (pretty-print (stx->datum t2))
;; assumed #f can only come from (typeof #%type)
;; (so this wont work when interacting with untyped code)
(or (and (false? (syntax-e t1)) (#%type? t2)) ; set Type : Type
@ -53,7 +56,7 @@
;; TODO: check that τ_in and τ_out have #%type?
[[X X- : τ_in] ... [τ_out τ_out- _] [τ_in τ_in- _] ...]
-------
[ (∀- (X- ...) (→- τ_in- ... τ_out-)) #,Type #;#%type])
[ (∀- (X- ...) (→- τ_in- ... τ_out-)) #%type])
;; abbrevs for Π
(define-simple-macro ( τ_in ... τ_out)
@ -72,20 +75,20 @@
[(_ ([x:id : τ_in] ...) τ_out)
#'(~∀ (x ...) (~→ τ_in ... τ_out))]))))
;; ;; equality -------------------------------------------------------------------
;; (define-internal-type-constructor =)
;; (define-typed-syntax (= t1 t2)
;; [⊢ t1 ≫ t1- ⇒ _] [⊢ t2 ≫ t2- ⇒ _]
;; ;; #:do [(printf "t1: ~a\n" (stx->datum #'t1-))
;; ;; (printf "t2: ~a\n" (stx->datum #'t2-))]
;; ; [t1- τ= t2-]
;; ---------------------
;; [⊢ (=- t1- t2-) ⇒ #,(expand/df #'#%type)])
;; equality -------------------------------------------------------------------
(define-internal-type-constructor =)
(define-typed-syntax (= t1 t2)
[ t1 t1- _] [ t2 t2- _]
;; #:do [(printf "t1: ~a\n" (stx->datum #'t1-))
;; (printf "t2: ~a\n" (stx->datum #'t2-))]
; [t1- τ= t2-]
---------------------
[ (=- t1- t2-) #%type])
;; (define-typed-syntax (eq-refl e)
;; [⊢ e ≫ e- ⇒ _]
;; ----------
;; [⊢ (#%app- void-) ⇒ (= e- e-)])
(define-typed-syntax (eq-refl e)
[ e e- _]
----------
[ (#%app- void-) (= e- e-)])
;; (define-typed-syntax (eq-elim t P pt w peq) ≫
;; [⊢ t ≫ t- ⇒ ty]
@ -145,15 +148,29 @@
;; [(~literal +-) (stx+ args)]
;; [(~literal zero?-) (apply zero? (stx->nats args))])))
;; TODO: fix orig after subst
(define-syntax app/eval
(syntax-parser
;; TODO: apply to only lambda args or all args?
[(_ (~and f ((~literal #%plain-lambda) (x ...) e)) e_arg ...)
;; TODO: need to replace all #%app- in this result with app/eval again
;; and then re-expand
(substs #'(e_arg ...) #'(x ...) #'e)]
[(_ f . args)
#'(#%app- f . args)]))
;; TODO: fix orig after subst
(define-typed-syntax #%app
[(_ e_fn e_arg ...)
; #:do[(printf "applying (1) ~a\n" (stx->datum #'e_fn))]
; [⊢ e_fn ≫ (~and e_fn- (_ (x:id ...) e ~!)) ⇒ (~Π ([X : τ_inX] ...) τ_outX)]
[ e_fn e_fn- ( ([X : τ_in] ...) τ_out)]
; #:do[(printf "applying (1) ~a\n" (stx->datum #'e_fn-))]
#:fail-unless (stx-length=? #'[τ_in ...] #'[e_arg ...])
(num-args-fail-msg #'e_fn #'[τ_in ...] #'[e_arg ...])
[ e_arg e_arg- τ_in] ... ; typechecking args
-----------------------------
[ (#%app- e_fn- e_arg- ...) τ_out]])
[ (app/eval e_fn- e_arg- ...) #,(substs #'(e_arg- ...) #'(X ...) #'τ_out)]])
#;(define-typed-syntax #%app
[(_ e_fn e_arg ...) ; apply lambda
@ -299,6 +316,7 @@
;; [⊢ (#%app- void-) ⇒ ty])
;; top-level ------------------------------------------------------------------
;; TODO: shouldnt need define-type-alias, should be same as define
(define-syntax define-type-alias
(syntax-parser
[(_ alias:id τ);τ:any-type)

View File

@ -116,7 +116,9 @@
;; booleans -------------------------------------------------------------------
;; Bool base type
;; TODO: use define instead of define-type-alias
(define-type-alias Bool ( (A) ( A A A)))
(check-type Bool : *)
;; Bool terms
(define T (λ ([A : *]) (λ ([x : A][y : A]) x)))
@ -124,98 +126,120 @@
(check-type T : Bool)
(check-type F : Bool)
;; check infer case
(define T2 (λ ([bool : *]) (λ ([x : bool][y : bool]) x)))
(define F2 (λ ([bool : *]) (λ ([x : bool][y : bool]) y)))
(define T2 (λ ([abool : *]) (λ ([x : abool][y : abool]) x)))
(define F2 (λ ([abool : *]) (λ ([x : abool][y : abool]) y)))
(check-type T2 : Bool)
(check-type F2 : Bool)
(define T3 : Bool (λ (bool) (λ (x y) x)))
(define F3 : Bool (λ (bool) (λ (x y) y)))
(define T3 : Bool (λ (abool) (λ (x y) x)))
(define F3 : Bool (λ (abool) (λ (x y) y)))
(check-type T3 : Bool)
(check-type F3 : Bool)
;; defining `and` requires instantiating polymorphic types
; (define and (λ ([x : Bool][y : Bool]) ((x Bool) y F)))
;(check-type and : (→ Bool Bool Bool))
(define and (λ ([x : Bool][y : Bool]) ((x Bool) y F)))
(check-type and : ( Bool Bool Bool))
(define or (λ ([x : Bool][y : Bool]) ((x Bool) T y)))
(check-type or : ( Bool Bool Bool))
(define not (λ ([x : Bool]) ((x Bool) F T)))
(check-type not : ( Bool Bool))
;; ;; And type constructor, ie type-level fn
;; (define-type-alias And
;; (λ ([A : *][B : *])
;; (∀ (C) (→ (→ A B C) C))))
;; (check-type And : (→ * * *))
;; `And` type constructor, ie type-level fn
(define-type-alias And
(λ ([P : *][Q : *])
( (C) ( ( P Q C) C))))
(check-type And : ( * * *))
;; ;; And type intro
;; (define
;; (λ ([A : *][B : *])
;; (λ ([x : A][y : B])
;; (λ ([C : *])
;; (λ ([f : (→ A B C)])
;; (f x y))))))
;; (check-type ∧ : (∀ (A B) (→ A B (And A B))))
;; And type intro (logical conj)
(define
(λ ([P : *][Q : *])
(λ ([p : P][q : Q])
(λ ([C : *])
(λ ([f : ( P Q C)])
(f p q))))))
(check-type : ( (P Q) ( P Q (And P Q))))
;; ;; And type elim
;; (define proj1
;; (λ ([A : *][B : *])
;; (λ ([e∧ : (And A B)])
;; ((e∧ A) (λ ([x : A][y : B]) x)))))
;; (define proj2
;; (λ ([A : *][B : *])
;; (λ ([e∧ : (And A B)])
;; ((e∧ B) (λ ([x : A][y : B]) y)))))
;; ;; bad proj2: (e A) should be (e B)
;; (typecheck-fail
;; (λ ([A : *][B : *])
;; (λ ([e∧ : (And A B)])
;; ((e∧ A) (λ ([x : A][y : B]) y))))
;; #:verb-msg
;; "expected (→ A B C), given (Π ((x : A) (y : B)) B)")
;; (check-type proj1 : (∀ (A B) (→ (And A B) A)))
;; (check-type proj2 : (∀ (A B) (→ (And A B) B)))
;; `And` type elim
(define proj1
(λ ([P : *][Q : *])
(λ ([e : (And P Q)])
((e P) (λ ([x : P][y : Q]) x)))))
(define proj2
(λ ([P : *][Q : *])
(λ ([e : (And P Q)])
((e Q) (λ ([x : P][y : Q]) y)))))
;; bad proj2: (e A) should be (e B)
(typecheck-fail
(λ ([P : *][Q : *])
(λ ([e : (And P Q)])
((e P) (λ ([x : P][y : Q]) y))))
#:verb-msg
"expected (→ P Q C), given (Π ((x : P) (y : Q)) Q)")
(check-type proj1 : ( (P Q) ( (And P Q) P)))
(check-type proj2 : ( (P Q) ( (And P Q) Q)))
;; ;((((conj q) p) (((proj2 p) q) a)) (((proj1 p) q) a)))))
;; (define and-commutes
;; (λ ([A : *][B : *])
;; (λ ([e∧ : (And A B)])
;; ((∧ B A) ((proj2 A B) e∧) ((proj1 A B) e∧)))))
;; ;; bad and-commutes, dont flip A and B: (→ (And A B) (And A B))
;; (typecheck-fail
;; (λ ([A : *][B : *])
;; (λ ([e∧ : (And A B)])
;; ((∧ A B) ((proj2 A B) e∧) ((proj1 A B) e∧))))
;; #:verb-msg
;; "#%app: type mismatch: expected A, given C") ; TODO: err msg should be B not C?
;; (check-type and-commutes : (∀ (A B) (→ (And A B) (And B A))))
;; proj1, no annotations
(check-type (λ (P Q) (λ (e) ((e P) (λ (x y) x))))
: ( (P Q) ( (And P Q) P)))
;; proj2, no annotations
(check-type (λ (P Q) (λ (e) ((e Q) (λ (x y) y))))
: ( (P Q) ( (And P Q) Q)))
(typecheck-fail (ann (λ (P Q) (λ (e) ((e Q) (λ (x y) x))))
: ( (P Q) ( (And P Q) Q)))
#:with-msg "expected C, given P") ; TODO: err msg, fix orig
(typecheck-fail (ann (λ (P Q) (λ (e) ((e P) (λ (x y) y))))
: ( (P Q) ( (And P Q) Q)))
#:with-msg "expected C, given Q") ; TODO: err msg
;; ;; nats -----------------------------------------------------------------------
;; (define-type-alias nat (∀ (A) (→ A (→ A A) A)))
;((((conj q) p) (((proj2 p) q) a)) (((proj1 p) q) a)))))
(define and-commutes
(λ ([A : *][B : *])
(λ ([e : (And A B)])
(( B A) ((proj2 A B) e) ((proj1 A B) e)))))
;; bad and-commutes, dont flip A and B: (→ (And A B) (And A B))
(typecheck-fail
(λ ([A : *][B : *])
(λ ([e : (And A B)])
(( A B) ((proj2 A B) e) ((proj1 A B) e))))
#:verb-msg
"#%app: type mismatch: expected P, given C") ; TODO: err msg
(check-type and-commutes : ( (A B) ( (And A B) (And B A))))
;; (define-type-alias z (λ ([Ty : *]) (λ ([zero : Ty][succ : (→ Ty Ty)]) zero)))
;; (define-type-alias s (λ ([n : nat])
;; (λ ([Ty : *])
;; (λ ([zero : Ty][succ : (→ Ty Ty)])
;; (succ ((n Ty) zero succ))))))
;; (check-type z : nat)
;; (check-type s : (→ nat nat))
;; nats -----------------------------------------------------------------------
(define-type-alias nat ( (A) ( A ( A A) A)))
(check-type nat : *)
;; (define-type-alias one (s z))
;; (define-type-alias two (s (s z)))
;; (check-type one : nat)
;; (check-type two : nat)
(define-type-alias z (λ ([Ty : *]) (λ ([zero : Ty][succ : ( Ty Ty)]) zero)))
(define-type-alias s (λ ([n : nat])
(λ ([Ty : *])
(λ ([zero : Ty][succ : ( Ty Ty)])
(succ ((n Ty) zero succ))))))
(check-type z : nat)
(check-type s : ( nat nat))
;; (define-type-alias plus
;; (λ ([x : nat][y : nat])
;; ((x nat) y s)))
;; (check-type plus : (→ nat nat nat))
(define-type-alias one (s z))
(define-type-alias two (s (s z)))
(check-type one : nat)
(check-type two : nat)
;; ;; equality -------------------------------------------------------------------
(define-type-alias plus
(λ ([x : nat][y : nat])
((x nat) y s)))
(check-type plus : ( nat nat nat))
(check-type (λ (x y) ((x nat) y s)) : ( nat nat nat))
;; (check-type (eq-refl one) : (= one one))
;; (check-type (eq-refl one) : (= (s z) one))
;; (check-type (eq-refl two) : (= (s (s z)) two))
;; (check-type (eq-refl two) : (= (s one) two))
;; (check-type (eq-refl two) : (= two (s one)))
;; (check-type (eq-refl two) : (= (s (s z)) (s one)))
;; (check-type (eq-refl two) : (= (plus one one) two))
;; (check-not-type (eq-refl two) : (= (plus one one) one))
;; equality -------------------------------------------------------------------
(check-type (eq-refl one) : (= one one))
(typecheck-fail (ann (eq-refl one) : (= two one))
#:verb-msg "expected (= two one), given (= one one)")
(check-type (eq-refl one) : (= (s z) one))
(check-type (eq-refl two) : (= (s (s z)) two))
(check-type (eq-refl two) : (= (s one) two))
(check-type (eq-refl two) : (= two (s one)))
(check-type (eq-refl two) : (= (s (s z)) (s one)))
;; the following example requires recursive expansion after eval/app
;(check-type (eq-refl two) : (= (plus one one) two))
;(check-not-type (eq-refl two) : (= (plus one one) one))
;; ;; symmetry of =
;; (check-type