macrotypes/sysf-tests.rkt
Stephen Chang 71d65e1a44 stlc, sysf: make function tycon infix instead of prefix
- TODO: typecheck uses -> as datum-literal because it can't see the
        actual literal, fix this
2014-08-21 13:31:11 -04:00

197 lines
7.9 KiB
Racket

#lang s-exp "sysf.rkt"
;; polymorphic tests
(define-type (Maybe X) (variant (None) (Just X)))
(check-type (None {Int}) : (Maybe Int))
(check-type (Just {Int} 1) : (Maybe Int))
(check-type-error (Just {Int} #f))
(check-not-type (Just {Int} 1) : (Maybe Bool))
(check-type (λ {X} ([x : X]) x) : ( (X) (X X)))
(check-type-error ((λ ([x : X]) x) 1))
;; lists
(define-type (MyList X) (variant (Null) (Cons X (MyList X))))
(check-type (Null {Int}) : (MyList Int))
(check-type (Cons {Int} 1 (Null {Int})) : (MyList Int))
(define (map/List {A B} [f : (A B)] [lst : (MyList A)]) : (MyList B)
(cases {A} lst
[Null () (Null {B})]
[Cons (x xs) (Cons {B} (f {A B} x) (map/List {A B} f xs))]))
(define (add1 [x : Int]) : Int (+ x 1))
(check-type-and-result
(map/List {Int Int} add1 (Cons {Int} 1 (Cons {Int} 2 (Null {Int}))))
: (MyList Int) => (Cons {Int} 2 (Cons {Int} 3 (Null {Int}))))
(check-type-and-result
(map/List {Int Bool} (λ ([x : Int]) #f) (Cons {Int} 1 (Cons {Int} 2 (Null {Int}))))
: (MyList Bool) => (Cons {Bool} #f (Cons {Bool} #f (Null {Bool}))))
;; fails without inst (2014-08-18)
;; - Typed Racket also requires inst
;; - OCaml does not require inst
(check-type-and-result
(map/List {Int Bool} (inst (λ {X} {[x : X]} #f) Int) (Cons {Int} 1 (Cons {Int} 2 (Null {Int}))))
: (MyList Bool) => (Cons {Bool} #f (Cons {Bool} #f (Null {Bool}))))
(check-type-and-result (list {Int} 1 2 3)
: (Listof Int) => (cons {Int} 1 (cons {Int} 2 (cons {Int} 3 (null {Int})))))
(check-type-error (list {Int} 1 2 #f))
(check-type-error (list {Bool} 1 2 3))
;; map
(define (map {A B} [f : (A B)] [lst : (Listof A)]) : (Listof B)
(if (null? {A} lst)
(null {B})
(cons {B} (f {A B} (first {A} lst)) (map {A B} f (rest {A} lst)))))
(check-type-and-result (map {Int Int} add1 (list {Int} 1 2 3))
: (Listof Int) => (list {Int} 2 3 4))
(check-type-error (map {Int Bool} add1 (list {Int} 1 2 3)))
(check-type-error (map {Bool Int} add1 (list {Int} 1 2 3)))
(check-type-error (map {Int Int} add1 (list {Bool} 1 2 3)))
;; Queen type
(define-type Queen (Q Int Int))
;; filter
(define (filter {A} [p? : (A Bool)] [lst : (Listof A)]) : (Listof A)
(if (null? {A} lst)
(null {A})
(let ([x (first {A} lst)])
(if (p? x)
(cons {A} x (filter {A} p? (rest {A} lst)))
(filter {A} p? (rest {A} lst))))))
(check-type-and-result
(filter {Int} (λ ([n : Int]) (if (= n 5) #f #t)) (list {Int} 1 2 3 4 5 5 6 7))
: (Listof Int) => (list {Int} 1 2 3 4 6 7))
;; foldr
(define (foldr {A B} [f : (A B B)] [base : B] [lst : (Listof A)]) : B
(if (null? {A} lst)
base
(f (first {A} lst) (foldr {A B} f base (rest {A} lst)))))
(check-type-and-result (foldr {Int Int} + 0 (build-list {Int} add1 4)) : Int => 10)
;; foldl
(define (foldl {A B} [f : (A B B)] [acc : B] [lst : (Listof A)]) : B
(if (null? {A} lst)
acc
(foldl {A B} f (f (first {A} lst) acc) (rest {A} lst))))
(check-type-and-result (foldl {Int Int} + 0 (build-list {Int} add1 4)) : Int => 10)
;; tails
(define (tails {A} [lst : (Listof A)]) : (Listof (Listof A))
(if (null? {A} lst)
(list {(Listof A)} (null {A}))
(cons {(Listof A)} lst (tails {A} (rest {A} lst)))))
(check-type-and-result (tails {Int} (list {Int} 1 2 3))
: (Listof (Listof Int))
=> (list {(Listof Int)} (list {Int} 1 2 3) (list {Int} 2 3) (list {Int} 3) (null {Int})))
(check-type-error (tails {Bool} (list {Int} 1 2 3)))
(check-type-error (tails {Int} (list {Bool} 1 2 3)))
(check-not-type (tails {Int} (list {Int} 1 2 3)) : (Listof Int))
(define (andmap {A} [f : (A Bool)] [lst : (Listof A)]) : Bool
(if (null? {A} lst)
#t
(and (f (first {A} lst)) (andmap {A} f (rest {A} lst)))))
(define (safe? [q1 : Queen] [q2 : Queen]) : Bool
(cases q1
[Q (x1 y1)
(cases q2
[Q (x2 y2) (not (or (or (= x1 x2) (= y1 y2))
(= (abs (- x1 x2)) (abs (- y1 y2)))))])]))
(check-type-and-result (safe? (Q 1 1) (Q 1 2)) : Bool => #f)
(check-type-and-result (safe? (Q 1 1) (Q 2 1)) : Bool => #f)
(check-type-and-result (safe? (Q 1 1) (Q 2 2)) : Bool => #f)
(check-type-and-result (safe? (Q 1 1) (Q 2 3)) : Bool => #t)
(define (safe/list? [lst : (Listof Queen)]) : Bool
(if (null? {Queen} lst)
#t
(let ([q1 (first {Queen} lst)])
(andmap {Queen} (λ ([q2 : Queen]) (safe? q1 q2)) (rest {Queen} lst)))))
(check-type safe/list? : ((Listof Queen) Bool))
(define (valid? [lst : (Listof Queen)]) : Bool
(andmap {(Listof Queen)} safe/list? (tails {Queen} lst)))
(define (build-list-help {A} [f : (Int A)] [n : Int] [m : Int]) : (Listof A)
(if (= n m)
(null {A})
(cons {A} (f {A} n) (build-list-help {A} f (add1 n) m))))
(define (build-list {A} [f : (Int A)] [n : Int]) : (Listof A)
(build-list-help {A} f 0 n))
(check-type-and-result (build-list {Int} add1 8)
: (Listof Int) => (list {Int} 1 2 3 4 5 6 7 8))
(define (append {A} [lst1 : (Listof A)] [lst2 : (Listof A)]) : (Listof A)
(if (null? {A} lst1)
lst2
(cons {A} (first {A} lst1) (append {A} (rest {A} lst1) lst2))))
(define (nqueens [n : Int]) : (Listof (Listof Queen))
(let ([process-row
(λ ([row : Int] [all-possible-so-far : (Listof (Listof Queen))])
(foldr {(Listof Queen) (Listof (Listof Queen))}
(λ ([qs : (Listof Queen)] [new-qss : (Listof (Listof Queen))])
(append
{(Listof Queen)}
(map
{Int (Listof Queen)}
(λ ([col : Int]) (cons {Queen} (Q row col) qs))
(build-list {Int} add1 n))
new-qss))
(null {(Listof Queen)})
all-possible-so-far))])
(let ([all-possible
(foldl
{Int (Listof (Listof Queen))}
process-row
(list {(Listof Queen)} (null {Queen}))
(build-list {Int} add1 n))])
(let ([solns (filter {(Listof Queen)} valid? all-possible)])
(if (null? {(Listof Queen)} solns)
(null {Queen})
(first {(Listof Queen)} solns))))))
(check-type-and-result (nqueens 4)
: (Listof (Listof Queen))
=> (list {Queen} (Q 4 3) (Q 3 1) (Q 2 4) (Q 1 2)))
;; testing for variable capture
(define (polyf {X} [x : X]) : X x)
(check-type polyf : ( (X) (X X)))
(define (polyf2 {X} [x : X]) : ( (X) (X X)) polyf)
(check-type polyf2 : ( (X) (X ( (X) (X X)))))
;; the following test fails bc X gets captured (2014-08-18)
;; - 2014-08-20: fixed
;; - 2014-08-20: backed out fix, so renamer is equiv to redex's "subst-vars"
;; Capture is actually ok because the binder gets renamed as well.
;; Since types are names anyways, it's ok.
;; Eg, the following example has type (→ Int (∀ (Int) (→ Int Int))), which is ok
; - 2014-08-20: changed my mind again,
;; capture is not ok when forall is applied to non-base types, ie →
;; (see test below)
;; - 2014-08-20: fixed by implementing manual subst
(check-type (inst polyf2 Int) : (Int ( (X) (X X))))
;; the following test "fails" bc forall is nested
;; - Typed Racket has same behavior, so ok
(check-type-error (inst (inst polyf2 Int) Bool))
(check-type-error ((inst polyf2 Int) #f))
;; again, the following example has type (∀ (Int) (→ Int Int)), which is ok
;; - 2014-08-20: fixed by impl manual subst
(check-type ((inst polyf2 Int) 1) : ( (X) (X X)))
(check-type (inst ((inst polyf2 Int) 1) Bool) : (Bool Bool))
;; test same example with type-instantiating apply instead of inst
(check-type (polyf2 {Int} 1) : ( (Y) (Y Y)))
(check-type-error (polyf2 {Int} #f))
(check-type-and-result ((polyf2 {Int} 1) {Bool} #f) : Bool => #f)
(check-type-error ((polyf2 {Int} 1) {Bool} 2))
(check-type (inst polyf (Int Int)) : ((Int Int) (Int Int)))
;; the follow test fails because the binder is renamed to (→ Int Int)
(check-type (inst polyf2 (Int Int)) : ((Int Int) ( (X) (X X))))