Managed to force TR to propagate Nothing types (by intersecting with a (∀) type which has the same shape as the desired one, deep enough to cause the containers of Nothing types to be re-examined
This commit is contained in:
parent
fc7e1552ee
commit
36d6630906
26
flexible-with-generalized-ctor-test.rkt
Normal file
26
flexible-with-generalized-ctor-test.rkt
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
#lang type-expander
|
||||||
|
(require (lib "phc-graph/flexible-with-generalized-ctor.hl.rkt"))
|
||||||
|
(define-type τ-4-2 (builder-τ 4 2))
|
||||||
|
(: f τ-4-2)
|
||||||
|
(define (f kx x ky y)
|
||||||
|
(error "Not Yet"))
|
||||||
|
(define-syntax-rule (F KX X KY Y)
|
||||||
|
(inst f propagate-τ
|
||||||
|
KX X KY Y))
|
||||||
|
(ann (F 0 Number 1 String)
|
||||||
|
(-> 0 Number 1 String
|
||||||
|
(List
|
||||||
|
(Pairof Zero (Some Number))
|
||||||
|
(Pairof One (Some String))
|
||||||
|
(Pairof 2 (None (List Zero One)))
|
||||||
|
(Pairof 3 (None (List Zero One))))))
|
||||||
|
|
||||||
|
|
||||||
|
#|
|
||||||
|
(: g (∀ (A) (case→ [→ (Some A) A]
|
||||||
|
[→ (None Any) 'none])))
|
||||||
|
(define (g a)
|
||||||
|
(if (Some? a)
|
||||||
|
(Some-f a)
|
||||||
|
'none))
|
||||||
|
|#
|
|
@ -9,7 +9,7 @@
|
||||||
Some
|
Some
|
||||||
Some?
|
Some?
|
||||||
Some-f
|
Some-f
|
||||||
N/S)
|
propagate-τ)
|
||||||
|
|
||||||
(require racket/require
|
(require racket/require
|
||||||
(for-syntax (subtract-in racket/base subtemplate/override)
|
(for-syntax (subtract-in racket/base subtemplate/override)
|
||||||
|
@ -17,9 +17,8 @@
|
||||||
racket/function
|
racket/function
|
||||||
subtemplate/override))
|
subtemplate/override))
|
||||||
|
|
||||||
(struct N/S ())
|
(struct (T) Some ([f : T]))
|
||||||
(struct (T) Some N/S ([f : T]))
|
(struct (T) None ([f : T]))
|
||||||
(struct (T) None N/S ([f : T]))
|
|
||||||
|
|
||||||
(define-type-expander BinaryTree
|
(define-type-expander BinaryTree
|
||||||
(syntax-parser
|
(syntax-parser
|
||||||
|
@ -35,6 +34,7 @@
|
||||||
#:with ((Kᵢⱼ …) …) (map (const (Kⱼ …)) (Nᵢ …))
|
#:with ((Kᵢⱼ …) …) (map (const (Kⱼ …)) (Nᵢ …))
|
||||||
#:with ((Xᵢⱼ …) …) (map (const (Xⱼ …)) (Nᵢ …))
|
#:with ((Xᵢⱼ …) …) (map (const (Xⱼ …)) (Nᵢ …))
|
||||||
#:with ((Nᵢⱼ …) …) (map (λ (ni) (map (const ni) (Xⱼ …))) (Nᵢ …))
|
#:with ((Nᵢⱼ …) …) (map (λ (ni) (map (const ni) (Xⱼ …))) (Nᵢ …))
|
||||||
|
#:with ((Nⱼᵢ …) …) (map (const (Nᵢ …)) (Mⱼ …))
|
||||||
(define Ns (Nᵢ …))
|
(define Ns (Nᵢ …))
|
||||||
(define Ms (Mⱼ …))
|
(define Ms (Mⱼ …))
|
||||||
;(define/with-syntax exceptⱼ (remove Mⱼ Ns)) …
|
;(define/with-syntax exceptⱼ (remove Mⱼ Ns)) …
|
||||||
|
@ -45,81 +45,38 @@
|
||||||
((map (const (remove Nᵢ Ns)) Ms) …))
|
((map (const (remove Nᵢ Ns)) Ms) …))
|
||||||
|
|
||||||
#'(∀ (A (?@ Kⱼ Xⱼ) …)
|
#'(∀ (A (?@ Kⱼ Xⱼ) …)
|
||||||
(→ A
|
(→ (?@ (∩ Kⱼ (U Nⱼᵢ …)) Xⱼ) …
|
||||||
(?@ Kⱼ Xⱼ) …
|
|
||||||
(BinaryTree
|
(BinaryTree
|
||||||
(U (Pairof Nᵢ
|
(∩ (U (Pairof Nᵢ
|
||||||
;; If Kⱼ is Nᵢ, then {∩ Kᵢⱼ {U . exceptᵢⱼ}} will
|
;; If Kⱼ is Nᵢ, then {∩ Kᵢⱼ {U . exceptᵢⱼ}} will
|
||||||
;; Nothing. We multiply the Nothing together by
|
;; Nothing. We multiply the Nothing together by
|
||||||
;; building a List out of them (a single occurrence
|
;; building a List out of them (a single occurrence
|
||||||
;; of Nothing should collapse the list), so that the
|
;; of Nothing should collapse the list), so that the
|
||||||
;; result should be Nothing only if there is no Kⱼ
|
;; result should be Nothing only if there is no Kⱼ
|
||||||
;; equal to Nᵢ. To force TR to propagate Nothing as
|
;; equal to Nᵢ. To force TR to propagate Nothing as
|
||||||
;; much as possible, we intersect it with
|
;; much as possible, we intersect it with
|
||||||
;; (None Any), which should be a no-op, but makes
|
;; (None Any), which should be a no-op, but makes
|
||||||
;; sure the simplifier which runs with ∩ kicks in.
|
;; sure the simplifier which runs with ∩ kicks in.
|
||||||
;; Therefore, the (None whatever) should appear only
|
;; Therefore, the (None whatever) should appear only
|
||||||
;; if there is indeed no key provided for that leaf.
|
;; if there is indeed no key provided for that leaf.
|
||||||
(∩ (None (List {∩ Kᵢⱼ {U . exceptᵢⱼ}} …))
|
(None (List {∩ Kᵢⱼ {U . exceptᵢⱼ}} …)))
|
||||||
A))
|
(∩ (Pairof Kᵢⱼ (Some Xᵢⱼ))
|
||||||
(∩ (Pairof Kᵢⱼ (Some Xᵢⱼ))
|
(Pairof Nᵢⱼ Any))
|
||||||
(Pairof Nᵢⱼ A))
|
…)
|
||||||
…)
|
A)
|
||||||
…)))]))
|
…)))]))
|
||||||
|
|
||||||
; ../../../.racket/snapshot/pkgs/typed-racket-lib/typed-racket/types/overlap.rkt:40:0: mask-accessor: contract violation
|
(define-type propagate-τ
|
||||||
|
(Pairof Natural
|
||||||
|
(U (None (Listof Natural))
|
||||||
|
(Some Any))))
|
||||||
|
|
||||||
|
; ../../../.racket/snapshot/pkgs/typed-racket-lib/typed-racket/types/overlap.rkt
|
||||||
|
;:40:0: mask-accessor: contract violation
|
||||||
; expected: mask?
|
; expected: mask?
|
||||||
; given: #f
|
; given: #f
|
||||||
;(define-type τ-4-2 (builder-τ 4 2))
|
;(define-type τ-4-2 (builder-τ 4 2))
|
||||||
|
|
||||||
(define-type t-4-2
|
|
||||||
(All (A 0/K 0/X 1/K 1/X)
|
|
||||||
(-> A
|
|
||||||
0/K
|
|
||||||
0/X
|
|
||||||
1/K
|
|
||||||
1/X
|
|
||||||
(List
|
|
||||||
(U (Pairof (∩ 0/K Zero) (∩ (Some 0/X) A))
|
|
||||||
(Pairof (∩ 1/K Zero) (∩ (Some 1/X) A))
|
|
||||||
(Pairof
|
|
||||||
Zero
|
|
||||||
(∩
|
|
||||||
(None
|
|
||||||
(List
|
|
||||||
(U (∩ 0/K 2) (∩ 0/K 3) (∩ 0/K One))
|
|
||||||
(U (∩ 1/K 2) (∩ 1/K 3) (∩ 1/K One))))
|
|
||||||
A)))
|
|
||||||
(U (Pairof (∩ 0/K One) (∩ (Some 0/X) A))
|
|
||||||
(Pairof (∩ 1/K One) (∩ (Some 1/X) A))
|
|
||||||
(Pairof
|
|
||||||
One
|
|
||||||
(∩
|
|
||||||
(None
|
|
||||||
(List
|
|
||||||
(U (∩ 0/K 2) (∩ 0/K 3) (∩ 0/K Zero))
|
|
||||||
(U (∩ 1/K 2) (∩ 1/K 3) (∩ 1/K Zero))))
|
|
||||||
A)))
|
|
||||||
(U (Pairof (∩ 0/K 2) (∩ (Some 0/X) A))
|
|
||||||
(Pairof (∩ 1/K 2) (∩ (Some 1/X) A))
|
|
||||||
(Pairof
|
|
||||||
2
|
|
||||||
(∩
|
|
||||||
(None
|
|
||||||
(List
|
|
||||||
(U (∩ 0/K 3) (∩ 0/K One) (∩ 0/K Zero))
|
|
||||||
(U (∩ 1/K 3) (∩ 1/K One) (∩ 1/K Zero))))
|
|
||||||
A)))
|
|
||||||
(U (Pairof (∩ 0/K 3) (∩ (Some 0/X) A))
|
|
||||||
(Pairof (∩ 1/K 3) (∩ (Some 1/X) A))
|
|
||||||
(Pairof
|
|
||||||
3
|
|
||||||
(∩
|
|
||||||
(None
|
|
||||||
(List
|
|
||||||
(U (∩ 0/K 2) (∩ 0/K One) (∩ 0/K Zero))
|
|
||||||
(U (∩ 1/K 2) (∩ 1/K One) (∩ 1/K Zero))))
|
|
||||||
A)))))))
|
|
||||||
|
|
||||||
;]
|
;]
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user