Managed to force TR to propagate Nothing types (by intersecting with a (∀) type which has the same shape as the desired one, deep enough to cause the containers of Nothing types to be re-examined

This commit is contained in:
Georges Dupéron 2017-05-12 22:05:20 +02:00
parent fc7e1552ee
commit 36d6630906
2 changed files with 55 additions and 72 deletions

View File

@ -0,0 +1,26 @@
#lang type-expander
(require (lib "phc-graph/flexible-with-generalized-ctor.hl.rkt"))
(define-type τ-4-2 (builder-τ 4 2))
(: f τ-4-2)
(define (f kx x ky y)
(error "Not Yet"))
(define-syntax-rule (F KX X KY Y)
(inst f propagate-τ
KX X KY Y))
(ann (F 0 Number 1 String)
(-> 0 Number 1 String
(List
(Pairof Zero (Some Number))
(Pairof One (Some String))
(Pairof 2 (None (List Zero One)))
(Pairof 3 (None (List Zero One))))))
#|
(: g ( (A) (case→ [ (Some A) A]
[ (None Any) 'none])))
(define (g a)
(if (Some? a)
(Some-f a)
'none))
|#

View File

@ -9,7 +9,7 @@
Some
Some?
Some-f
N/S)
propagate-τ)
(require racket/require
(for-syntax (subtract-in racket/base subtemplate/override)
@ -17,9 +17,8 @@
racket/function
subtemplate/override))
(struct N/S ())
(struct (T) Some N/S ([f : T]))
(struct (T) None N/S ([f : T]))
(struct (T) Some ([f : T]))
(struct (T) None ([f : T]))
(define-type-expander BinaryTree
(syntax-parser
@ -35,6 +34,7 @@
#:with ((Kᵢⱼ ) ) (map (const (Kⱼ )) (Nᵢ ))
#:with ((Xᵢⱼ ) ) (map (const (Xⱼ )) (Nᵢ ))
#:with ((Nᵢⱼ ) ) (map (λ (ni) (map (const ni) (Xⱼ ))) (Nᵢ ))
#:with ((Nⱼᵢ ) ) (map (const (Nᵢ )) (Mⱼ ))
(define Ns (Nᵢ ))
(define Ms (Mⱼ ))
;(define/with-syntax exceptⱼ (remove Mⱼ Ns)) …
@ -45,10 +45,9 @@
((map (const (remove Nᵢ Ns)) Ms) ))
#'( (A (?@ Kⱼ Xⱼ) )
( A
(?@ Kⱼ Xⱼ)
( (?@ ( Kⱼ (U Nⱼᵢ )) Xⱼ)
(BinaryTree
(U (Pairof Nᵢ
((U (Pairof Nᵢ
;; If Kⱼ is Nᵢ, then {∩ Kᵢⱼ {U . exceptᵢⱼ}} will
;; Nothing. We multiply the Nothing together by
;; building a List out of them (a single occurrence
@ -60,66 +59,24 @@
;; sure the simplifier which runs with ∩ kicks in.
;; Therefore, the (None whatever) should appear only
;; if there is indeed no key provided for that leaf.
( (None (List { Kᵢⱼ {U . exceptᵢⱼ}} ))
A))
(None (List { Kᵢⱼ {U . exceptᵢⱼ}} )))
( (Pairof Kᵢⱼ (Some Xᵢⱼ))
(Pairof Nᵢⱼ A))
(Pairof Nᵢⱼ Any))
)
A)
)))]))
; ../../../.racket/snapshot/pkgs/typed-racket-lib/typed-racket/types/overlap.rkt:40:0: mask-accessor: contract violation
(define-type propagate-τ
(Pairof Natural
(U (None (Listof Natural))
(Some Any))))
; ../../../.racket/snapshot/pkgs/typed-racket-lib/typed-racket/types/overlap.rkt
;:40:0: mask-accessor: contract violation
; expected: mask?
; given: #f
;(define-type τ-4-2 (builder-τ 4 2))
(define-type t-4-2
(All (A 0/K 0/X 1/K 1/X)
(-> A
0/K
0/X
1/K
1/X
(List
(U (Pairof ( 0/K Zero) ( (Some 0/X) A))
(Pairof ( 1/K Zero) ( (Some 1/X) A))
(Pairof
Zero
(
(None
(List
(U ( 0/K 2) ( 0/K 3) ( 0/K One))
(U ( 1/K 2) ( 1/K 3) ( 1/K One))))
A)))
(U (Pairof ( 0/K One) ( (Some 0/X) A))
(Pairof ( 1/K One) ( (Some 1/X) A))
(Pairof
One
(
(None
(List
(U ( 0/K 2) ( 0/K 3) ( 0/K Zero))
(U ( 1/K 2) ( 1/K 3) ( 1/K Zero))))
A)))
(U (Pairof ( 0/K 2) ( (Some 0/X) A))
(Pairof ( 1/K 2) ( (Some 1/X) A))
(Pairof
2
(
(None
(List
(U ( 0/K 3) ( 0/K One) ( 0/K Zero))
(U ( 1/K 3) ( 1/K One) ( 1/K Zero))))
A)))
(U (Pairof ( 0/K 3) ( (Some 0/X) A))
(Pairof ( 1/K 3) ( (Some 1/X) A))
(Pairof
3
(
(None
(List
(U ( 0/K 2) ( 0/K One) ( 0/K Zero))
(U ( 1/K 2) ( 1/K One) ( 1/K Zero))))
A)))))))
;]