Implementation for a version of the poly constructor

This commit is contained in:
Georges Dupéron 2017-05-14 03:50:35 +02:00
parent 5cc510ebf6
commit 6221a5db83
2 changed files with 107 additions and 21 deletions

View File

@ -1,6 +1,10 @@
#lang type-expander
(require (lib "phc-graph/flexible-with-generalized-ctor.hl.rkt"))
(define-type τ-4-2 (builder-τ 4 2))
#;(τ (U (Pairof Any (None (Listof (Some Any))))
(Some Any))
(Some0 Any) Number (Some1 Any) String)
#|
(: f τ-4-2)
(define (f kx x ky y)
@ -24,4 +28,78 @@
(if (Some? a)
(Some-f a)
'none))
|#
|#
(struct (A) Some ([f : A]) #:transparent)
(struct (A) Some0 Some () #:transparent)
(struct (A) Some1 Some () #:transparent)
(struct (A) Some2 Some () #:transparent)
(struct (A) Some3 Some () #:transparent)
(struct (A) None ([f : A]) #:transparent)
;; A is:
#;(U (Pairof Any (None (Listof (Some Any))))
(Some Any))
(struct |0| ())
(struct |1| ())
(struct |2| ())
(struct |3| ())
(: f ( (A 0/K 0/X 1/K 1/X)
( ( 0/K (U |0| |1| |2| |3|))
0/X
( 1/K (U |0| |1| |2| |3|))
1/X
(List
(
(U
(Pairof |0| (None (List ( 0/K (U |1| |2| |3|)) ( 1/K (U |1| |2| |3|)))))
( (Pairof 0/K (Some 0/X)) (Pairof |0| Any))
( (Pairof 1/K (Some 1/X)) (Pairof |0| Any)))
A)
(
(U
(Pairof |1| (None (List ( 0/K (U |0| |2| |3|)) ( 1/K (U |0| |2| |3|)))))
( (Pairof 0/K (Some 0/X)) (Pairof |1| Any))
( (Pairof 1/K (Some 1/X)) (Pairof |1| Any)))
A)
(
(U
(Pairof |2| (None (List ( 0/K (U |0| |1| |3|)) ( 1/K (U |0| |1| |3|)))))
( (Pairof 0/K (Some 0/X)) (Pairof |2| Any))
( (Pairof 1/K (Some 1/X)) (Pairof |2| Any)))
A)
(
(U
(Pairof |3| (None (List ( 0/K (U |0| |1| |2|)) ( 1/K (U |0| |1| |2|)))))
( (Pairof 0/K (Some 0/X)) (Pairof |3| Any))
( (Pairof 1/K (Some 1/X)) (Pairof |3| Any)))
A)))))
(define (f kx x ky y)
(list (cond
[((make-predicate |0|) kx) (cons kx (Some x))]
[((make-predicate |0|) ky) (cons ky (Some y))]
[else (cons |0| (None (list kx ky)))])
(cond
[((make-predicate |1|) kx) (cons kx (Some x))]
[((make-predicate |1|) ky) (cons ky (Some y))]
[else (cons |1| (None (list kx ky)))])
(cond
[((make-predicate |2|) kx) (cons kx (Some x))]
[((make-predicate |2|) ky) (cons ky (Some y))]
[else (cons |2| (None (list kx ky)))])
(cond
[((make-predicate |3|) kx) (cons kx (Some x))]
[((make-predicate |3|) ky) (cons ky (Some y))]
[else (cons |3| (None (list kx ky)))]))
((λ () (error "not yet"))))

View File

@ -9,7 +9,7 @@
Some
Some?
Some-f
#;propagate-τ)
propagate-τ)
(require racket/require
(for-syntax (subtract-in racket/base subtemplate/override)
@ -20,7 +20,7 @@
(for-meta 2 racket/base))
(struct (T) Some ([f : T]))
(struct None ())
(struct (T) None ([f : T]))
(define-type-expander BinaryTree
(syntax-parser
@ -30,17 +30,14 @@
(define-syntax (def-SomeNone* stx)
(syntax-case stx ()
[(_ Some None n)
[(_ Some n)
(with-syntax ([(Someᵢ ) (map (λ (i) (format-id #'Some "Some~a" i))
(range n))]
[(Noneᵢ ) (map (λ (i) (format-id #'None "None~a" i))
(range n))])
#`(begin
(provide Someᵢ Noneᵢ )
(struct (T) Someᵢ Some ())
(struct Noneᵢ None ()) ))]))
(provide Someᵢ )
(struct (T) Someᵢ Some ()) ))]))
(def-SomeNone* Some None 4)
(def-SomeNone* Some 4)
(define-type-expander builder-τ
(syntax-parser
@ -49,27 +46,38 @@
#:with (Mⱼ ) (range m)
#:with (Someᵢ ) (map (λ (n) (format-id #'HERE? "Some~a" n)) (Nᵢ ))
#:with ((Someᵢⱼ ) ) (map λ.(map (const %) (Mⱼ )) (#'Someᵢ ))
#:with (Noneᵢ ) (map (λ (n) (format-id #'HERE? "None~a" n)) (Nᵢ ))
;#:with ((Noneᵢⱼ …) …) (map (const #'(Noneᵢ …)) (Nᵢ …))
#:with ((Kᵢⱼ ) ) (map (const #'(Kⱼ )) (Nᵢ ))
#:with ((Xᵢⱼ ) ) (map (const #'(Xⱼ )) (Nᵢ ))
#:with ((Nᵢⱼ ) ) (map (λ (ni) (map (const ni) (Xⱼ ))) (Nᵢ ))
#:with ((Nⱼᵢ ) ) (map (const #'(Nᵢ )) (Mⱼ ))
(define Ns (Nᵢ ))
(define Nones (#'Noneᵢ ))
(define Ms (Mⱼ ))
(define Somes (Someᵢ ))
;(define/with-syntax exceptⱼ (remove Mⱼ Ns)) …
; (define/with-syntax ((exceptᵢⱼ …) …)
; (map (const (exceptⱼ …)) (Nᵢ …)))
(define/with-syntax ((exceptᵢ ) ) ((remove NoneNones) ))
(define/with-syntax ((exceptᵢⱼ ) )
((map (const (remove #'Noneᵢ Nones free-identifier=?)) Ms) ))
(define/with-syntax (exceptᵢ ) ((remove NNs) ))
(define/with-syntax (((exceptᵢⱼ ) ) )
((map (const (remove Someᵢ Somes)) Ms) ))
(define/with-syntax result
#'( (A (?@ Kⱼ Xⱼ) )
( (?@ ( Kⱼ (U None (Some Any))) Xⱼ)
( (?@ ( Kⱼ (Some Any)) ( Kⱼ Xⱼ))
(BinaryTree
( (U ( Noneᵢ Kᵢⱼ )
( (U (Pairof Nᵢ
;; If Kⱼ is Nᵢ, then {∩ Kᵢⱼ {U . exceptᵢⱼ}} will
;; Nothing. We multiply the Nothing together by
;; building a List out of them (a single occurrence
;; of Nothing should collapse the list), so that the
;; result should be Nothing only if there is no Kⱼ
;; equal to Nᵢ. To force TR to propagate Nothing as
;; much as possible, we intersect it with
;; (None Any), which should be a no-op, but makes
;; sure the simplifier which runs with ∩ kicks in.
;; Therefore, the (None whatever) should appear only
;; if there is indeed no key provided for that leaf.
(None (List { Kᵢⱼ {U (exceptᵢⱼ Any) }} )))
( Kᵢⱼ (Someᵢⱼ Xᵢⱼ))
)
A)
@ -77,10 +85,10 @@
(displayln (syntax->datum #'result))
#'result]))
#;(define-type propagate-τ
(Pairof Any
(U (None (Listof Natural))
(Some Any))))
(define-type propagate-τ
(Pairof Any
(U (None (Listof Natural))
(Some Any))))
; ../../../.racket/snapshot/pkgs/typed-racket-lib/typed-racket/types/overlap.rkt
;:40:0: mask-accessor: contract violation