#lang type-expander/lang #|hyper-literate #:♦ #:no-auto-require (dotlambda/unhygienic . type-expander/lang) ♦chunk[<*>|# (provide builder-τ None Some Some? Some-f N/S) (require racket/require (for-syntax (subtract-in racket/base subtemplate/override) racket/list racket/function subtemplate/override)) (struct N/S ()) (struct (T) Some N/S ([f : T])) (struct (T) None N/S ([f : T])) (define-type-expander BinaryTree (syntax-parser [(_ leafⱼ …) ;; TODO: implement BinaryTree. #'(List leafⱼ …)])) (define-type-expander builder-τ (syntax-parser [(_ n m) #:with (Nᵢ …) (range n) #:with (Mⱼ …) (range m) #:with ((Kᵢⱼ …) …) (map (const (Kⱼ …)) (Nᵢ …)) #:with ((Xᵢⱼ …) …) (map (const (Xⱼ …)) (Nᵢ …)) #:with ((Nᵢⱼ …) …) (map (λ (ni) (map (const ni) (Xⱼ …))) (Nᵢ …)) (define Ns (Nᵢ …)) (define Ms (Mⱼ …)) ;(define/with-syntax exceptⱼ (remove Mⱼ Ns)) … ; (define/with-syntax ((exceptᵢⱼ …) …) ; (map (const (exceptⱼ …)) (Nᵢ …))) (define/with-syntax (exceptᵢ …) ((remove Nᵢ Ns) …)) (define/with-syntax ((exceptᵢⱼ …) …) ((map (const (remove Nᵢ Ns)) Ms) …)) #'(∀ (A (?@ Kⱼ Xⱼ) …) (→ A (?@ Kⱼ Xⱼ) … (BinaryTree (U (Pairof Nᵢ ;; If Kⱼ is Nᵢ, then {∩ Kᵢⱼ {U . exceptᵢⱼ}} will ;; Nothing. We multiply the Nothing together by ;; building a List out of them (a single occurrence ;; of Nothing should collapse the list), so that the ;; result should be Nothing only if there is no Kⱼ ;; equal to Nᵢ. To force TR to propagate Nothing as ;; much as possible, we intersect it with ;; (None Any), which should be a no-op, but makes ;; sure the simplifier which runs with ∩ kicks in. ;; Therefore, the (None whatever) should appear only ;; if there is indeed no key provided for that leaf. (∩ (None (List {∩ Kᵢⱼ {U . exceptᵢⱼ}} …)) A)) (∩ (Pairof Kᵢⱼ (Some Xᵢⱼ)) (Pairof Nᵢⱼ A)) …) …)))])) ; ../../../.racket/snapshot/pkgs/typed-racket-lib/typed-racket/types/overlap.rkt:40:0: mask-accessor: contract violation ; expected: mask? ; given: #f ;(define-type τ-4-2 (builder-τ 4 2)) (define-type t-4-2 (All (A 0/K 0/X 1/K 1/X) (-> A 0/K 0/X 1/K 1/X (List (U (Pairof (∩ 0/K Zero) (∩ (Some 0/X) A)) (Pairof (∩ 1/K Zero) (∩ (Some 1/X) A)) (Pairof Zero (∩ (None (List (U (∩ 0/K 2) (∩ 0/K 3) (∩ 0/K One)) (U (∩ 1/K 2) (∩ 1/K 3) (∩ 1/K One)))) A))) (U (Pairof (∩ 0/K One) (∩ (Some 0/X) A)) (Pairof (∩ 1/K One) (∩ (Some 1/X) A)) (Pairof One (∩ (None (List (U (∩ 0/K 2) (∩ 0/K 3) (∩ 0/K Zero)) (U (∩ 1/K 2) (∩ 1/K 3) (∩ 1/K Zero)))) A))) (U (Pairof (∩ 0/K 2) (∩ (Some 0/X) A)) (Pairof (∩ 1/K 2) (∩ (Some 1/X) A)) (Pairof 2 (∩ (None (List (U (∩ 0/K 3) (∩ 0/K One) (∩ 0/K Zero)) (U (∩ 1/K 3) (∩ 1/K One) (∩ 1/K Zero)))) A))) (U (Pairof (∩ 0/K 3) (∩ (Some 0/X) A)) (Pairof (∩ 1/K 3) (∩ (Some 1/X) A)) (Pairof 3 (∩ (None (List (U (∩ 0/K 2) (∩ 0/K One) (∩ 0/K Zero)) (U (∩ 1/K 2) (∩ 1/K One) (∩ 1/K Zero)))) A))))))) ;]