#lang typed/racket (require "typed-untyped.rkt") (define-typed/untyped-modules (provide sequence-length>= in-last? in-tails in-heads in-split in-split* *in-split Syntax-Listof my-in-syntax in-syntax sequence-cons sequence-null sequence-list) (require racket/sequence) ;; sequence-length>= (begin (: sequence-length>= (→ (Sequenceof Any) Index Boolean)) (define (sequence-length>= s l) (let-values ([(more? next) (sequence-generate s)]) (define (rec [remaining : Index]) : Boolean (if (= remaining 0) #t (and (more?) (begin (next) (rec (sub1 remaining)))))) (rec l)))) ;; in-last? ;; Returns a sequence of the same length as `s`. All values in the sequence ;; are #f, except for the last one which is 'last. (begin (: in-last? (→ (Sequenceof Any) (Sequenceof (U #f 'last)))) (define (in-last? s) (if (sequence-length>= s 1) (sequence-append (sequence-map (λ _ #f) (sequence-tail s 1)) (in-value 'last)) empty-sequence))) ;; in-heads and in-tails (begin (: in-tails (∀ (T) (→ (Listof T) (Listof (Pairof T (Listof T)))))) (define (in-tails l) (if (null? l) '() (cons l (in-tails (cdr l))))) (module+ test (require typed/rackunit) (check-equal? (for/list : (Listof (Listof Number)) ([x : (Listof Number) (in-tails '(1 2 3 4 5))]) x) '((1 2 3 4 5) (2 3 4 5) (3 4 5) (4 5) (5))) (let ((l '(1 2 3 4 5))) (check-true (eq? (caddr (for/list : (Listof (Listof Number)) ([x : (Listof Number) (in-tails l)]) x)) (cddr l))))) (: in-heads (∀ (T) (→ (Listof T) (Listof (Pairof T (Listof T)))))) (define (in-heads l) (: my-append1 (→ (Listof T) T (Pairof T (Listof T)))) (define (my-append1 x y) (if (null? x) (list y) (cons (car x) (my-append1 (cdr x) y)))) (define (on-heads/private [acc-head : (Listof T)] [l : (Listof T)]) : (Listof (Pairof T (Listof T))) (if (null? l) '() (let ([new-head (my-append1 acc-head (car l))]) (cons new-head (on-heads/private new-head (cdr l)))))) (on-heads/private '() l)) (module+ test (require typed/rackunit) (check-equal? (for/list : (Listof (Listof Number)) ([x : (Listof Number) (in-heads '(1 2 3 4 5))]) x) '((1) (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5))))) ;; in-split, in-split*, *in-split, *in-split* (begin ;; Can't write the type of in-split, because typed/racket doesn't allow ;; writing (Sequenceof A B), just (Sequenceof A). ;; in-parallel's type has access to the multi-valued version of Sequenceof, ;; though, so we let typed/racket propagate the inferred type. (define #:∀ (T) (in-split [l : (Listof T)]) (in-parallel (sequence-append (in-value '()) (in-heads l)) (sequence-append (in-tails l) (in-value '())))) ;; Same as in-split, but without the empty tail. (define #:∀ (T) (in-split* [l : (Listof T)]) (in-parallel (sequence-append (in-value '()) (in-heads l)) (sequence-append (in-tails l)))) ;; Same as in-split, but without the empty head. (define #:∀ (T) (*in-split [l : (Listof T)]) (in-parallel (in-heads l) (sequence-append (sequence-tail (in-tails l) 1) (in-value '())))) (define #:∀ (T) (*in-split* [l : (Listof T)]) (in-parallel (in-heads l) (sequence-tail (in-tails l) 1)))) ;; my-in-syntax and Syntax-Listof (begin ;; See also syntax-e, which does not flatten syntax pairs, and syntax->list, ;; which isn't correctly typed (won't take #'(a . (b c d e))). (define-type (Syntax-Listof T) (Rec R (Syntaxof (U Null (Pairof T R) (Listof T))))) ;; in-syntax is now provided by racket/sequence. (: my-in-syntax (∀ (T) (→ (Syntax-Listof T) (Listof T)))) (define (my-in-syntax stx) (let ((e (syntax-e stx))) (if (null? e) e (if (syntax? (cdr e)) (cons (car e) (my-in-syntax (cdr e))) e)))) (define (test-in-syntax) ; (ann `(,#'(a . b) ,#'(c . d)) ; (Listof (Syntaxof (U (Pairof (Syntaxof 'a) (Syntaxof 'b)) ; (Pairof (Syntaxof 'c) (Syntaxof 'c)))))) (my-in-syntax #'((a . b) (c . d))) ; (ann `(,#'a ,#'b ,#'c ,#'d ,#'e) (Listof (Syntaxof (U 'a 'b 'c 'd)))) (my-in-syntax #'(a . (b c d e))) ; (ann '() (Listof (Syntaxof Nothing))) (my-in-syntax #'()))) ;; combining sequences: ;; sequence-cons ;; sequence-null ;; sequence-list (begin (: sequence-cons (∀ (A B) (→ (Sequenceof A) (Sequenceof B) (Sequenceof (cons A B))))) (define (sequence-cons sa sb) (sequence-map (λ ([x : (List A B)]) (cons (car x) (cadr x))) (in-values-sequence (in-parallel sa sb)))) (: sequence-null (Sequenceof Null)) (define sequence-null (in-cycle (in-value '()))) (define #:∀ (A) (sequence-head [s : (Sequenceof A)]) (sequence-ref s 0)) (define #:∀ (A) (sequence-tail1 [s : (Sequenceof A)]) (sequence-tail s 1)) ;; sequence-list should have the type: ;; (∀ (A ...) (→ (Sequenceof A) ... (Sequenceof (List A ...))))) ;; But the type system rejects the two definitions below. ;; This definition works, but it's the wrong type: #;(: sequence-list (∀ (A) (→ (Sequenceof A) * (Sequenceof (Listof A))))) #;(define (sequence-list . sequences) (if (null? sequences) sequence-null (sequence-cons (car sequences) (apply sequence-list (cdr sequences))))) ;; This definition works: (: sequence-list (∀ (A ...) (→ (Sequenceof A) ... (Sequenceof (List A ...))))) (define (sequence-list . seqs) (let ([more?+next (map (λ #:∀ (T) ([s : (Sequenceof T)]) (let-values ([(more? next) (sequence-generate s)]) (cons more? next))) seqs)]) ((inst make-do-sequence Void (List A ...)) (λ () [values (λ (_) (map (λ #:∀ (T) ([mn : (Pairof (→ Boolean) (→ T))]) ((cdr mn))) more?+next)) (λ (_) (void)) (void) (λ (_) (andmap (λ #:∀ (T) ([mn : (Pairof (→ Boolean) (→ T))]) ((car mn))) more?+next)) #f #f])))) #;(define (sequence-list . seqs) (let ([more?+next (map (λ #:∀ (T) ([s : (Sequenceof T)]) : (Pairof (→ Boolean) (→ T)) (let-values ([(more? next) (sequence-generate s)]) (cons more? next))) seqs)]) ((inst make-do-sequence (List (Sequenceof A) ...) (List A ...)) (λ () [values (λ (seqs2) (map sequence-head seqs2)) (λ (seqs2) (map sequence-tail1 seqs2)) seqs (λ (_) (andmap (λ #:∀ (T) ([mn : (Pairof (→ Boolean) (→ T))]) ((car mn))) more?+next)) (λ (seqs2) 'todo) (λ _ #t) (λ _ #t)])))) (module+ test (require typed/rackunit) (check-equal? (let-values ([(more? next) (sequence-generate (sequence-list (in-list '(1 2 3)) (in-vector #(a b c)) (in-list '("x" "y" "z"))))]) (list (more?) (more?) (next) (next) (more?) (more?) (more?) (next) (more?) (more?) (more?))) '(#t #t (1 a "x") (2 b "y") #t #t #t (3 c "z") #f #f #f))) #| (: sequence-list (∀ (A ...) (→ (Sequenceof A) ... (Sequenceof (List A ...))))) (define (sequence-list . sequences) (if (null? sequences) sequence-null (sequence-cons (car sequences) (apply sequence-list (cdr sequences))))) |# #| (: sequence-list (∀ (F R ...) (case→ [→ (Sequenceof Null)] [→ (Sequenceof F) (Sequenceof R) ... (Sequenceof (List F R ...))]))) (define sequence-list (case-lambda [() sequence-null] [(sequence . sequences) (sequence-cons sequence (apply sequence-list sequences))])) |#))