Finally it works.
svn: r15018 original commit: 82e256473d7d6f6720051194325e33931fb86d77
This commit is contained in:
parent
9340664957
commit
cb94e5817d
|
@ -63,36 +63,37 @@
|
|||
(provide topological-sort)
|
||||
(define (topological-sort root)
|
||||
|
||||
;; a general purpose hash for nodes
|
||||
(define t (make-hasheq))
|
||||
|
||||
;; make `t' map a node to an mcons of total input and total output times
|
||||
;; ignoring edges to/from the *-node and self edges
|
||||
(define (add! node)
|
||||
;; Make `nodes+io-times' map a node to an mcons of total input and total
|
||||
;; output times ignoring edges to/from the *-node and self edges, the order
|
||||
;; is the reverse of how we scan the graph
|
||||
(define (get-node+io node)
|
||||
(define (sum node-callers/lees edge-caller/lee edge-callee/ler-time)
|
||||
(for/fold ([sum 0]) ([e (in-list (node-callers/lees node))])
|
||||
(let ([n (edge-caller/lee e)])
|
||||
(if (or (eq? n node) (eq? n root)) sum
|
||||
(+ sum (edge-callee/ler-time e))))))
|
||||
(hash-set! t node
|
||||
(mcons (sum node-callers edge-caller edge-callee-time)
|
||||
(cons node (mcons (sum node-callers edge-caller edge-callee-time)
|
||||
(sum node-callees edge-callee edge-caller-time))))
|
||||
(define nodes+io-times
|
||||
(let loop ([todo (list root)])
|
||||
(let loop ([todo (list root)] [r '()])
|
||||
(if (pair? todo)
|
||||
(let ([cur (car todo)] [todo (cdr todo)])
|
||||
(unless (eq? cur root) (add! cur))
|
||||
(loop (append (filter-map (lambda (e)
|
||||
(let* ([cur (car todo)] [todo (cdr todo)]
|
||||
[r (if (eq? cur root) r (cons (get-node+io cur) r))])
|
||||
(loop (append todo ; append new things in the end, so it's a BFS
|
||||
(filter-map (lambda (e)
|
||||
(let ([lee (edge-callee e)])
|
||||
(and (not (hash-ref t lee #f)) lee)))
|
||||
(node-callees cur))
|
||||
todo)))
|
||||
(and (not (memq lee todo))
|
||||
(not (assq lee r))
|
||||
lee)))
|
||||
(node-callees cur)))
|
||||
r))
|
||||
;; note: the result does not include the root node
|
||||
(hash-map t cons))))
|
||||
r)))
|
||||
|
||||
;; now create a linear order similar to the way section 9.4 describes, except
|
||||
;; Now create a linear order similar to the way section 9.4 describes, except
|
||||
;; that this uses the total caller/callee times to get an even better
|
||||
;; ordering (also, look for sources and sinks in every step)
|
||||
;; ordering (also, look for sources and sinks in every step). Note that the
|
||||
;; list we scan is in reverse order.
|
||||
(define acyclic-order
|
||||
(let loop ([todo nodes+io-times] [rev-left '()] [right '()])
|
||||
;; heuristic for best sources: the ones with the lowest intime/outtime
|
||||
|
@ -131,19 +132,22 @@
|
|||
;; all done, get the order
|
||||
(append (reverse rev-left) right))))
|
||||
|
||||
;; we're done, so make `t' map nodes to their callers with only edges that
|
||||
;; We're done, so make `t' map nodes to their callers with only edges that
|
||||
;; are consistent with this ordering
|
||||
(for ([n acyclic-order]) (hash-set! t n '()))
|
||||
(let loop ([nodes acyclic-order])
|
||||
(when (pair? nodes)
|
||||
(let ([ler (car nodes)] [rest (cdr nodes)])
|
||||
(for ([e (in-list (node-callees ler))])
|
||||
(let ([lee (edge-callee e)])
|
||||
(when (memq lee rest) ; only consistent edges
|
||||
;; note that we connect each pair of nodes at most once, and
|
||||
;; never a node with itself
|
||||
(hash-set! t lee (cons ler (hash-ref t lee))))))
|
||||
(loop rest))))
|
||||
(define t
|
||||
(let ([t (make-hasheq)])
|
||||
(let loop ([nodes acyclic-order])
|
||||
(when (pair? nodes)
|
||||
(let ([ler (car nodes)] [rest (cdr nodes)])
|
||||
(unless (hash-ref t ler #f) (hash-set! t ler '()))
|
||||
(for ([e (in-list (node-callees ler))])
|
||||
(let ([lee (edge-callee e)])
|
||||
(when (memq lee rest) ; only consistent edges
|
||||
;; note that we connect each pair of nodes at most once, and
|
||||
;; never a node with itself
|
||||
(hash-set! t lee (cons ler (hash-ref t lee '()))))))
|
||||
(loop rest))))
|
||||
t))
|
||||
|
||||
;; finally, assign layers using the simple method from section 9.1: sources
|
||||
;; are at 0, and other nodes are placed at one layer after their parents
|
||||
|
|
|
@ -54,6 +54,7 @@
|
|||
'ok]
|
||||
[bad (error 'test ">>> ~s" bad)])
|
||||
|
||||
;; demonstrates different edge-caller/lee-times
|
||||
(match (analyze `(10
|
||||
[0 0 ,A ,B ,A]
|
||||
[0 1 ,A ,B ,A]))
|
||||
|
|
|
@ -3,55 +3,159 @@
|
|||
(require tests/eli-tester profile/structs profile/utils
|
||||
scheme/list scheme/match)
|
||||
|
||||
(define (connect! from to)
|
||||
(define edge (make-edge 0 from 0 to 0))
|
||||
(set-node-callers! to (cons edge (node-callers to )))
|
||||
(set-node-callees! from (cons edge (node-callees from))))
|
||||
(define arrow-sym->times
|
||||
;; arrows with caller/callee times
|
||||
;; `->' defaults to `1->1', and `N->' defaults to `N->N'
|
||||
;; note: A 1->2 B means that the caller time is 2 and the callee time is one,
|
||||
;; since the time are wrt the other node.
|
||||
(let ([t (make-hasheq)])
|
||||
(lambda (arr)
|
||||
(hash-ref! t arr
|
||||
(lambda ()
|
||||
(define m
|
||||
(regexp-match #rx"^(?:([0-9]+)|)->(?:([0-9]+)|)$"
|
||||
(symbol->string arr)))
|
||||
(and m
|
||||
(list (string->number (or (caddr m) (cadr m) "1"))
|
||||
(string->number (or (cadr m) "1")))))))))
|
||||
|
||||
(define (connect! from from-time to to-time)
|
||||
(if (memq from (map edge-caller (node-callers to)))
|
||||
(error (format "bad graph spec in tests, ~s->~s already connected" from to))
|
||||
(let ([edge (make-edge 0 from from-time to to-time)])
|
||||
(set-node-callers! to (cons edge (node-callers to )))
|
||||
(set-node-callees! from (cons edge (node-callees from))))))
|
||||
|
||||
(define-match-expander arrow
|
||||
(syntax-rules () [(_ ler lee) (app arrow-sym->times (list ler lee))]))
|
||||
|
||||
(define (set=? l1 l2) (null? (append (remq* l1 l2) (remq* l2 l1))))
|
||||
|
||||
(define (sort-graph . edges)
|
||||
(define names (remove-duplicates (remq* '(->) (append* edges))))
|
||||
(define names
|
||||
(remove-duplicates (filter (lambda (s) (not (arrow-sym->times s)))
|
||||
(append* edges))))
|
||||
(define nodes (map (lambda (sym) (make-node sym #f '() 0 0 '() '())) names))
|
||||
(define ->node (make-immutable-hasheq (map cons names nodes)))
|
||||
(for ([edges edges])
|
||||
(let loop ([xs edges])
|
||||
(match xs
|
||||
[(list from '-> to '-> _ ...)
|
||||
(connect! (hash-ref ->node from) (hash-ref ->node to))
|
||||
[(list from (arrow ftime ttime) to (arrow _ _) _ ...)
|
||||
(connect! (hash-ref ->node from) ftime (hash-ref ->node to) ttime)
|
||||
(loop (cddr xs))]
|
||||
[(list from '-> to _ ...)
|
||||
(connect! (hash-ref ->node from) (hash-ref ->node to))
|
||||
[(list from (arrow ftime ttime) to _ ...)
|
||||
(connect! (hash-ref ->node from) ftime (hash-ref ->node to) ttime)
|
||||
(loop (cdddr xs))]
|
||||
['() (void)])))
|
||||
(map (lambda (nodes) (map node-id nodes)) (topological-sort (car nodes))))
|
||||
(let ([sorted (topological-sort (car nodes))])
|
||||
(unless (set=? nodes (cons (car nodes) (append* sorted)))
|
||||
(error 'sort-graph
|
||||
"not all nodes appear in sorted output; expected ~e, got ~e"
|
||||
nodes (cons (car nodes) (append* sorted))))
|
||||
(map (lambda (nodes) (map node-id nodes)) sorted)))
|
||||
|
||||
(define (same-levels graph levels)
|
||||
;; `expected' is the desired result, modulo ordering inside the levels
|
||||
;; can have more than one if there are several valid outputs
|
||||
(define (same-levels graph expected . more-valid)
|
||||
(define sorted (sort-graph graph))
|
||||
(define (set=? l1 l2) (null? (append (remq* l1 l2) (remq* l2 l1))))
|
||||
(andmap set=? sorted levels))
|
||||
(or (ormap (lambda (expected)
|
||||
(and (= (length sorted) (length expected))
|
||||
(andmap set=? sorted expected)))
|
||||
(cons expected more-valid))
|
||||
(error (format "bad result, got ~s" sorted))))
|
||||
|
||||
;; to see a result: (sort-graph '(* -> A)) (exit)
|
||||
|
||||
(provide topological-sort-tests)
|
||||
(define (topological-sort-tests)
|
||||
(test
|
||||
|
||||
(same-levels '(* -> A -> B)
|
||||
'((A) (B)))
|
||||
;; sanity check: works with an empty stack
|
||||
;; actually, this version does get stuck in a loop -- which shouldn't happen
|
||||
;; in reality since there are no *->* edges
|
||||
;; (same-levels '(* -> *)
|
||||
;; '())
|
||||
;; instead, just have a single * node:
|
||||
(topological-sort (make-node '* #f '() 0 0 '() '()))
|
||||
=> '()
|
||||
|
||||
(same-levels '(* -> A -> B -> *
|
||||
* -> B -> A -> *)
|
||||
'((A B)))
|
||||
(same-levels '(* -> A)
|
||||
'((A)))
|
||||
|
||||
(same-levels '(* -> A -> B -> C
|
||||
* -> C)
|
||||
'((A) (B) (C)))
|
||||
(same-levels '(* -> A -> B -> *)
|
||||
'((A) (B)))
|
||||
|
||||
(same-levels '(* -> A
|
||||
* -> B
|
||||
B -> B)
|
||||
'((A B)))
|
||||
(same-levels '(* -> A -> *
|
||||
* -> B -> *
|
||||
A -> A)
|
||||
'((A B)))
|
||||
|
||||
(same-levels '(* -> A
|
||||
* -> B -> C
|
||||
* -> C -> B)
|
||||
'((A B C)))
|
||||
;; note that ((B) (A)) would also be consistent, but the code organizes for
|
||||
;; this result
|
||||
(same-levels '(* -> A -> B -> A)
|
||||
'((A) (B)))
|
||||
|
||||
;; this is an example using the actual times for the A->B->A case that is
|
||||
;; tested in main.ss
|
||||
(same-levels '(* 2->1 A 1->2 B 2->1 A 1->2 *)
|
||||
'((A) (B)))
|
||||
|
||||
|
||||
(same-levels '(* -> A 2-> B -> A)
|
||||
'((A) (B)))
|
||||
|
||||
(same-levels '(* -> A 2-> B 3-> A)
|
||||
'((B) (A)))
|
||||
|
||||
(same-levels '(* -> A -> B -> C
|
||||
* -> C)
|
||||
'((A) (B) (C)))
|
||||
|
||||
(same-levels '(* -> A -> B -> C -> * ; check with *s too
|
||||
* -> C)
|
||||
'((A) (B) (C)))
|
||||
|
||||
(same-levels '(* -> X -> A -> B -> C
|
||||
X -> C )
|
||||
'((X) (A) (B) (C)))
|
||||
|
||||
(same-levels '(* -> A -> B -> C -> *
|
||||
* -> C 3-> B -> *)
|
||||
'((A C) (B)))
|
||||
|
||||
(same-levels '(* -> A -> B -> A
|
||||
* -> C)
|
||||
'((A C) (B)))
|
||||
|
||||
(same-levels '(* -> A -> B -> *
|
||||
* -> B -> A -> *)
|
||||
'((A) (B))
|
||||
'((B) (A)))
|
||||
|
||||
(same-levels '(* -> A
|
||||
* -> B
|
||||
B -> B)
|
||||
'((A B)))
|
||||
|
||||
(same-levels '(* -> A
|
||||
* -> B -> C
|
||||
* -> C -> B)
|
||||
'((A B) (C))
|
||||
'((A C) (B)))
|
||||
|
||||
;; Note that X could be pushed to the third level, making it closer to D,
|
||||
;; but this is not done since for a printout it makes more sense to have all
|
||||
;; the sources at the top. (It might make sense to do this compacting in
|
||||
;; the gui, but even there it might be more convenient to see all roots at
|
||||
;; the top.)
|
||||
(same-levels '(* -> A -> B -> C -> D -> *
|
||||
* -> X -> D)
|
||||
'((X A) (B) (C) (D)))
|
||||
|
||||
(same-levels '(* -> A1 -> A2 -> A3 -> A4 -> A5
|
||||
* -> B1 -> B2 -> B3
|
||||
* -> C1
|
||||
* -> D1 -> D2 -> D3 -> D4)
|
||||
'((A1 B1 C1 D1) (A2 B2 D2) (A3 B3 D3) (A4 D4) (A5)))
|
||||
|
||||
))
|
||||
|
|
Loading…
Reference in New Issue
Block a user