Documentation on polygonal numbers
This commit is contained in:
parent
f68cc0ada6
commit
00a886ea0c
|
@ -20,7 +20,7 @@
|
|||
(parameterize ([sandbox-output 'string]
|
||||
[sandbox-error-output 'string])
|
||||
(make-evaluator 'racket)))
|
||||
@;(interaction-eval #:eval math-eval (require math))
|
||||
;(interaction-eval #:eval math-eval (require racket math))
|
||||
|
||||
|
||||
@title[#:tag "number-theory" #:style '(toc)]{Number Theory}
|
||||
|
@ -446,7 +446,6 @@ Note: The function @racket[divisor-sum] is multiplicative.
|
|||
(eulerian-number 5 2)]
|
||||
}
|
||||
|
||||
|
||||
@defproc[(fibonacci [n Natural]) natural?]{
|
||||
Returns the @racket[n]th Fibonacci number.
|
||||
Definition:
|
||||
|
@ -507,4 +506,49 @@ Note: The function @racket[divisor-sum] is multiplicative.
|
|||
(multinomial 5 3 2)]
|
||||
}
|
||||
|
||||
|
||||
|
||||
@defproc[(partition-count [n Natural]) natural?]{
|
||||
Returns the number of partitions of @racket[n].
|
||||
A partition of a positive integer @racket[n] is a way
|
||||
of writing @racket[n] as a sum of positive integers.
|
||||
The number 3 has the partitions @math-style{1+1+1, 1+2, 3}.
|
||||
See @url{http://en.wikipedia.org/wiki/Partition_(number_theory)}.
|
||||
@interaction[(require math racket)
|
||||
(partition-count 3)
|
||||
(partition-count 4)]
|
||||
}
|
||||
|
||||
|
||||
@; ----------------------------------------
|
||||
@section[#:tag "special_numbers"]{Special Numbers}
|
||||
|
||||
@subsection{Polygonal Numbers}
|
||||
|
||||
@defproc[(triangle? [n Natural]) boolean?]{}
|
||||
@defproc[(square? [n Natural]) boolean?]{}
|
||||
@defproc[(pentagonal? [n Natural]) boolean?]{}
|
||||
@defproc[(hexagonal? [n Natural]) boolean?]{}
|
||||
@defproc[(heptagonal? [n Natural]) boolean?]{}
|
||||
@defproc[(octagonal? [n Natural]) boolean?]{
|
||||
The functions
|
||||
@racket[triangle?], @racket[square?], @racket[pentagonal?],
|
||||
@racket[hexagonal?],@racket[heptagonal?] and @racket[octagonal?]
|
||||
checks whether the input is a polygonal number of the types
|
||||
triangle, square, pentagonal, hexagonal, heptagonal and octogonal
|
||||
respectively.
|
||||
}
|
||||
|
||||
@defproc[(triangle [n Natural]) natural?]{}
|
||||
@defproc[(sqr [n Natural]) natural?]{}
|
||||
@defproc[(pentagonal [n Natural]) natural?]{}
|
||||
@defproc[(hexagonal [n Natural]) natural?]{}
|
||||
@defproc[(heptagonal [n Natural]) natural?]{}
|
||||
@defproc[(octagonal [n Natural]) natural?]{
|
||||
The functions @racket[triangle], @racket[sqr], @racket[pentagonal],
|
||||
@racket[hexagonal],@racket[heptagonal] and @racket[octagonal]
|
||||
return the @racket[n]th polygonal number of the corresponding
|
||||
type of polygonal number.
|
||||
}
|
||||
|
||||
@(close-eval untyped-eval)
|
Loading…
Reference in New Issue
Block a user