Major revision of subtyping code for performance.

Improves tests/typed-racket/succeed/new-metrics.rkt by about 33% overall runtime.

Major changes include:
 - Handling memoization entirely inside the `subtype*` function.
 - Remembering only previously seen pairs of types when one of them
   might be a recursive type (such as Mu or a structure).
   Thanks to Ryan Newtown for this this idea, which enables the
   previous change as well.
 - Doing as much as possible without touching parameters.
   (Unfortunately, not as much as I hoped was possible here).
 - Replacing uses of => in `match` with #:when (written for this purpose).
 - Significant improvement to the `Type-key` system so that it is
   useful much more often.
 - Use of unsafe operations.
 - Minor optimizations to a few other operations.
This commit is contained in:
Sam Tobin-Hochstadt 2013-10-20 22:37:01 -04:00
parent d13afa0f78
commit 0a6537a6cb
5 changed files with 405 additions and 384 deletions

View File

@ -7,6 +7,7 @@
"interning.rkt"
racket/lazy-require
racket/stxparam
racket/unsafe/ops
(for-syntax
racket/match
(except-in syntax/parse id identifier keyword)
@ -353,6 +354,11 @@
[Object def-object #:Object object-case print-object object-name-ht object-rec-id]
[PathElem def-pathelem #:PathElem pathelem-case print-pathelem pathelem-name-ht pathelem-rec-id])
;; NOTE: change these if the definitions above change, or everything will segfault
(define-syntax-rule (unsafe-Rep-seq v) (unsafe-struct*-ref v 0))
(define-syntax-rule (unsafe-Type-key v) (unsafe-struct*-ref v 1))
(provide unsafe-Rep-seq unsafe-Type-key)
(define (Rep-values rep)
(match rep
[(? (lambda (e) (or (Filter? e)

View File

@ -8,7 +8,7 @@
;; TODO use contract-req
(require (utils tc-utils)
"rep-utils.rkt" "object-rep.rkt" "filter-rep.rkt" "free-variance.rkt"
racket/match
racket/match racket/list
racket/contract
racket/lazy-require
(for-syntax racket/base syntax/parse))
@ -100,11 +100,13 @@
;; free type variables
;; n is a Name
(def-type F ([n symbol?]) [#:frees (single-free-var n) empty-free-vars] [#:fold-rhs #:base])
(def-type F ([n symbol?]) [#:frees (single-free-var n) empty-free-vars]
[#:fold-rhs #:base])
;; id is an Identifier
;; This will always resolve to a struct
(def-type Name ([id identifier?]) [#:intern (hash-id id)] [#:frees #f] [#:fold-rhs #:base])
(def-type Name ([id identifier?]) [#:intern (hash-id id)] [#:frees #f]
[#:fold-rhs #:base])
;; rator is a type
;; rands is a list of types
@ -180,7 +182,7 @@
;; elem is a Type
(def-type Set ([elem Type/c])
[#:key 'set])
[#:key #f])
;; result is a Type
(def-type Evt ([result Type/c])
@ -197,7 +199,6 @@
[#:key (if numeric?
'number
(case name
[(Number Integer) 'number]
[(Boolean) 'boolean]
[(String) 'string]
[(Symbol) 'symbol]
@ -375,10 +376,13 @@
[#:fold-rhs #:base] [#:key 'continuation-mark-key])
;; v : Racket Value
(def-type Value (v) [#:frees #f] [#:fold-rhs #:base] [#:key (cond [(number? v) 'number]
[(boolean? v) 'boolean]
[(null? v) 'null]
[else #f])])
(def-type Value (v) [#:frees #f] [#:fold-rhs #:base]
[#:key (cond [(or (eq? v 0) (eq? v 1)) 'number]
;; other numbers don't work with the optimizations in subtype.rkt
;; which assume that unions of numbers are subtyped in simple ways
[(boolean? v) 'boolean]
[(null? v) 'null]
[else #f])])
;; elems : Listof[Type]
(def-type Union ([elems (and/c (listof Type/c)
@ -394,12 +398,18 @@
sorted?))))])
[#:frees (λ (f) (combine-frees (map f elems)))]
[#:fold-rhs (apply Un (map type-rec-id elems))]
[#:key (let loop ([res null] [ts elems])
(if (null? ts) res
(let ([k (Type-key (car ts))])
(cond [(pair? k) (loop (append k res) (cdr ts))]
[k (loop (cons k res) (cdr ts))]
[else #f]))))])
[#:key
(let ()
(define d
(let loop ([ts elems] [res null])
(cond [(null? ts) res]
[else
(define k (Type-key (car ts)))
(cond [(not k) (list #f)]
[(pair? k) (loop (cdr ts) (append k res))]
[else (loop (cdr ts) (cons k res))])])))
(define d* (remove-duplicates d))
(if (and (pair? d*) (null? (cdr d*))) (car d*) d*))])
(def-type Univ () [#:frees #f] [#:fold-rhs #:base])

View File

@ -1,5 +1,5 @@
#lang racket/base
(require "../utils/utils.rkt")
(require "../utils/utils.rkt" racket/unsafe/ops)
(require (rep type-rep) (contract-req))
(provide (except-out (all-defined-out) current-seen))
@ -7,8 +7,16 @@
(define current-seen (make-parameter null))
(define (currently-subtyping?) (not (null? (current-seen))))
(define (seen-before s t) (cons (Type-seq s) (Type-seq t)))
(define (remember s t A) (cons (seen-before s t) A))
(define (seen? s t) (member (seen-before s t) (current-seen)))
(define (remember s t A)
(if (or (Mu? s) (Mu? t)
(Name? s) (Name? t)
(Struct? s) (Struct? t)
(App? s) (App? t))
(cons (seen-before s t) A)
A))
(define (seen? ss st cs)
(for/or ([i (in-list cs)])
(and (eq? ss (unsafe-car i)) (eq? st (unsafe-cdr i)))))

View File

@ -1,6 +1,7 @@
#lang racket/base
(require (except-in "../utils/utils.rkt" infer)
racket/match racket/function racket/lazy-require racket/list
racket/unsafe/ops
(prefix-in c: (contract-req))
(rep type-rep filter-rep object-rep rep-utils)
(utils tc-utils)
@ -13,12 +14,6 @@
("../infer/infer.rkt" (infer)))
(define subtype-cache (make-hash))
(define (cache-types s t)
(cache-keys (Type-seq s) (Type-seq t)))
(define (cache-keys ks kt)
(hash-set! subtype-cache (cons ks kt) #t))
(define (cached? s t)
(hash-ref subtype-cache (cons (Type-seq s) (Type-seq t)) #f))
(define-syntax-rule (handle-failure e)
e)
@ -27,10 +22,7 @@
;; type type -> boolean
(define/cond-contract (subtype s t)
(c:-> (c:or/c Type/c SomeValues/c) (c:or/c Type/c SomeValues/c) boolean?)
(define k (cons (Type-seq s) (Type-seq t)))
((if (currently-subtyping?) hash-ref hash-ref!)
subtype-cache k
(lambda () (and (subtype* (current-seen) s t) #t))))
(and (subtype* (current-seen) s t) #t))
;; are all the s's subtypes of all the t's?
;; [type] [type] -> boolean
@ -221,366 +213,371 @@
(subtype* s t)
(subtype* t s)))
(define-syntax (early-return stx)
(syntax-parse stx
[(_ e:expr ... #:return-when e0:expr e1:expr rest ...)
#'(let ()
e ...
(if e0 e1
(early-return rest ...)))]
[(_ e:expr ...) #'(let () e ...)]))
(define bottom-key (Rep-seq -Bottom))
(define top-key (Rep-seq Univ))
;; the algorithm for recursive types transcribed directly from TAPL, pg 305
;; List[(cons Number Number)] type type -> List[(cons Number Number)]
;; potentially raises exn:subtype, when the algorithm fails
;; is s a subtype of t, taking into account constraints A
;; List[(cons Number Number)] type type -> List[(cons Number Number)] or #f
;; is s a subtype of t, taking into account previously seen pairs A
(define/cond-contract (subtype* A s t)
(c:-> list? Type? Type? c:any/c)
(define =t (lambda (a b) (if (and (Rep? a) (Rep? b)) (type-equal? a b) (equal? a b))))
(parameterize ([match-equality-test =t]
[current-seen A])
(let ([ks (Type-key s)] [kt (Type-key t)])
(cond
[(or (seen? s t) (type-equal? s t)) A]
[(and (symbol? ks) (symbol? kt) (not (eq? ks kt))) #f]
[(and (symbol? ks) (pair? kt) (not (memq ks kt))) #f]
[(and (pair? ks) (pair? kt)
(for/and ([i (in-list ks)]) (not (memq i kt))))
#f]
[else
(let* ([A0 (remember s t A)])
(parameterize ([current-seen A0])
(match* (s t)
[(_ (Univ:)) A0]
[((or (ValuesDots: _ _ _) (Values: _) (AnyValues:)) (AnyValues:)) A0]
;; error is top and bot
[(_ (Error:)) A0]
[((Error:) _) A0]
;; (Un) is bot
[(_ (Union: (list))) #f]
[((Union: (list)) _) A0]
;; value types
[((Value: v1) (Value: v2)) (=> unmatch) (if (equal? v1 v2) A0 (unmatch))]
;; values are subtypes of their "type"
[((Value: v) (Base: _ _ pred _)) (if (pred v) A0 #f)]
;; tvars are equal if they are the same variable
[((F: t) (F: t*)) (if (eq? t t*) A0 #f)]
;; Avoid needing to resolve things that refer to different structs.
;; Saves us from non-termination
;; Must happen *before* the sequence cases, which sometimes call `resolve' in match expanders
[((or (? Struct? s1) (NameStruct: s1)) (or (? Struct? s2) (NameStruct: s2)))
(=> unmatch)
(cond [(unrelated-structs s1 s2)
;(dprintf "found unrelated structs: ~a ~a\n" s1 s2)
#f]
[else (unmatch)])]
;; similar case for structs and base types, which are obviously unrelated
[((Base: _ _ _ _) (or (? Struct? s1) (NameStruct: s1)))
#f]
[((or (? Struct? s1) (NameStruct: s1)) (Base: _ _ _ _))
#f]
;; same for all values.
[((Value: (? (negate struct?) _)) (or (? Struct? s1) (NameStruct: s1)))
#f]
[((or (? Struct? s1) (NameStruct: s1)) (Value: (? (negate struct?) _)))
#f]
;; just checking if s/t is a struct misses recursive/union/etc cases
[((? (lambda (_) (eq? ks 'struct))) (Base: _ _ _ _)) #f]
[((Base: _ _ _ _) (? (lambda (_) (eq? kt 'struct)))) #f]
;; sequences are covariant
[((Sequence: ts) (Sequence: ts*))
(subtypes* A0 ts ts*)]
[((Listof: t) (Sequence: (list t*)))
(subtype* A0 t t*)]
[((Pair: t1 t2) (Sequence: (list t*)))
(subtype-seq A0 (subtype* t1 t*) (subtype* t2 (-lst t*)))]
[((MListof: t) (Sequence: (list t*)))
(subtype* A0 t t*)]
;; To check that mutable pair is a sequence we check that the cdr
;; is both an mutable list and a sequence
[((MPair: t1 t2) (Sequence: (list t*)))
(subtype-seq A0
(subtype* t1 t*)
(subtype* t2 (simple-Un (-val null) (make-MPairTop)))
(subtype* t2 t))]
[((List: ts) (Sequence: (list t*)))
(subtypes* A0 ts (map (λ (_) t*) ts))]
[((HeterogeneousVector: ts) (Sequence: (list t*)))
(subtypes* A0 ts (map (λ (_) t*) ts))]
[((Vector: t) (Sequence: (list t*)))
(subtype* A0 t t*)]
[((Base: 'String _ _ _) (Sequence: (list t*)))
(subtype* A0 -Char t*)]
[((Base: 'Bytes _ _ _) (Sequence: (list t*)))
(subtype* A0 -Byte t*)]
[((Base: 'Input-Port _ _ _) (Sequence: (list t*)))
(subtype* A0 -Nat t*)]
[((Value: (? exact-nonnegative-integer? n)) (Sequence: (list t*)))
(define possibilities
(list
(list byte? -Byte)
(list portable-index? -Index)
(list portable-fixnum? -NonNegFixnum)
(list values -Nat)))
(define type
(for/or ((pred-type (in-list possibilities)))
(match pred-type
((list pred? type)
(and (pred? n) type)))))
(subtype* A0 type t*)]
[((Base: _ _ _ #t) (Sequence: (list t*)))
(define type
;; FIXME: thread the store through here
(for/or ((t (in-list (list -Byte -Index -NonNegFixnum -Nat))))
(or (and (subtype* A0 s t) t))))
(if type
(subtype* A0 type t*)
#f)]
[((Hashtable: k v) (Sequence: (list k* v*)))
(subtypes* A0 (list k v) (list k* v*))]
[((Set: t) (Sequence: (list t*)))
(subtype* A0 t t*)]
;; special-case for case-lambda/union with only one argument
[((Function: arr1) (Function: (list arr2)))
(cond [(null? arr1) #f]
[else
(define comb (combine-arrs arr1))
(or (and comb (arr-subtype*/no-fail A0 comb arr2))
(supertype-of-one/arr A0 arr2 arr1))])]
;; case-lambda
[((Function: arr1) (Function: arr2))
(when (null? arr1) #f)
(let loop-arities ([A* A0]
[arr2 arr2])
(cond
(c:-> (listof (cons/c fixnum? fixnum?)) Type? Type? c:any/c)
(define ss (unsafe-Rep-seq s))
(define st (unsafe-Rep-seq t))
(early-return
#:return-when (or (eq? ss st) (seen? ss st A)) A
(define cr (hash-ref subtype-cache (cons ss st) 'missing))
#:return-when (boolean? cr) (and cr A)
(define ks (unsafe-Type-key s))
(define kt (unsafe-Type-key t))
#:return-when (and (symbol? ks) (symbol? kt) (not (eq? ks kt))) #f
#:return-when (and (symbol? ks) (pair? kt) (not (memq ks kt))) #f
#:return-when
(and (pair? ks) (pair? kt)
(for/and ([i (in-list ks)]) (not (memq i kt))))
#f
#:return-when (eq? ss bottom-key) A
#:return-when (eq? st top-key) A
(define A0 (remember s t A))
(define r
;; FIXME -- make this go into only the places that need it -- slows down new-metrics.rkt significantly
(parameterize ([current-seen A0])
(match* (s t)
;; these cases are above as special cases
;; [((Union: (list)) _) A0] ;; this is extremely common, so it goes first
;; [(_ (Univ:)) A0]
[((or (ValuesDots: _ _ _) (Values: _) (AnyValues:)) (AnyValues:)) A0]
;; error is top and bot
[(_ (Error:)) A0]
[((Error:) _) A0]
;; (Un) is bot
[(_ (Union: (list))) #f]
;; value types
[((Value: v1) (Value: v2))
#:when (equal? v1 v2) A0]
;; values are subtypes of their "type"
[((Value: v) (Base: _ _ pred _)) (if (pred v) A0 #f)]
;; tvars are equal if they are the same variable
[((F: t) (F: t*)) (if (eq? t t*) A0 #f)]
;; Avoid needing to resolve things that refer to different structs.
;; Saves us from non-termination
;; Must happen *before* the sequence cases, which sometimes call `resolve' in match expanders
[((or (? Struct? s1) (NameStruct: s1)) (or (? Struct? s2) (NameStruct: s2)))
#:when (unrelated-structs s1 s2)
#f]
;; similar case for structs and base types, which are obviously unrelated
[((Base: _ _ _ _) (or (? Struct? s1) (NameStruct: s1)))
#f]
[((or (? Struct? s1) (NameStruct: s1)) (Base: _ _ _ _))
#f]
;; same for all values.
[((Value: (? (negate struct?) _)) (or (? Struct? s1) (NameStruct: s1)))
#f]
[((or (? Struct? s1) (NameStruct: s1)) (Value: (? (negate struct?) _)))
#f]
;; sequences are covariant
[((Sequence: ts) (Sequence: ts*))
(subtypes* A0 ts ts*)]
[((Listof: t) (Sequence: (list t*)))
(subtype* A0 t t*)]
[((Pair: t1 t2) (Sequence: (list t*)))
(subtype-seq A0 (subtype* t1 t*) (subtype* t2 (-lst t*)))]
[((MListof: t) (Sequence: (list t*)))
(subtype* A0 t t*)]
;; To check that mutable pair is a sequence we check that the cdr
;; is both an mutable list and a sequence
[((MPair: t1 t2) (Sequence: (list t*)))
(subtype-seq A0
(subtype* t1 t*)
(subtype* t2 (simple-Un (-val null) (make-MPairTop)))
(subtype* t2 t))]
[((List: ts) (Sequence: (list t*)))
(subtypes* A0 ts (map (λ (_) t*) ts))]
[((HeterogeneousVector: ts) (Sequence: (list t*)))
(subtypes* A0 ts (map (λ (_) t*) ts))]
[((Vector: t) (Sequence: (list t*)))
(subtype* A0 t t*)]
[((Base: 'String _ _ _) (Sequence: (list t*)))
(subtype* A0 -Char t*)]
[((Base: 'Bytes _ _ _) (Sequence: (list t*)))
(subtype* A0 -Byte t*)]
[((Base: 'Input-Port _ _ _) (Sequence: (list t*)))
(subtype* A0 -Nat t*)]
[((Value: (? exact-nonnegative-integer? n)) (Sequence: (list t*)))
(define possibilities
(list
(list byte? -Byte)
(list portable-index? -Index)
(list portable-fixnum? -NonNegFixnum)
(list values -Nat)))
(define type
(for/or ((pred-type (in-list possibilities)))
(match pred-type
((list pred? type)
(and (pred? n) type)))))
(subtype* A0 type t*)]
[((Base: _ _ _ #t) (Sequence: (list t*)))
(define type
;; FIXME: thread the store through here
(for/or ((t (in-list (list -Byte -Index -NonNegFixnum -Nat))))
(or (and (subtype* A0 s t) t))))
(if type
(subtype* A0 type t*)
#f)]
[((Hashtable: k v) (Sequence: (list k* v*)))
(subtypes* A0 (list k v) (list k* v*))]
[((Set: t) (Sequence: (list t*)))
(subtype* A0 t t*)]
;; special-case for case-lambda/union with only one argument
[((Function: arr1) (Function: (list arr2)))
(cond [(null? arr1) #f]
[else
(define comb (combine-arrs arr1))
(or (and comb (arr-subtype*/no-fail A0 comb arr2))
(supertype-of-one/arr A0 arr2 arr1))])]
;; case-lambda
[((Function: arr1) (Function: arr2))
(if (null? arr1) #f
(let loop-arities ([A* A0]
[arr2 arr2])
(cond
[(null? arr2) A*]
[(supertype-of-one/arr A* (car arr2) arr1) => (lambda (A) (loop-arities A (cdr arr2)))]
[else #f]))]
;; recur structurally on pairs
[((Pair: a d) (Pair: a* d*))
(subtypes* A0 (list a d) (list a* d*))]
;; recur structurally on dotted lists, assuming same bounds
[((ListDots: s-dty dbound) (ListDots: t-dty dbound))
(subtype* A0 s-dty t-dty)]
;; For dotted lists and regular lists, we check that (All (dbound) s-dty) is a subtype
;; of t-elem, so that no matter what dbound is instatiated with s-dty is still a subtype
;; of t-elem. We cannot just replace dbound with Univ because of variance issues.
[((ListDots: s-dty dbound) (Listof: t-elem))
(subtype* A0 (-poly (dbound) s-dty) t-elem)]
;; quantification over two types preserves subtyping
[((Poly: ns b1) (Poly: ms b2))
(=> unmatch)
(unless (= (length ns) (length ms))
(unmatch))
;; substitute ns for ms in b2 to make it look like b1
(subtype* A0 b1 (subst-all (make-simple-substitution ms (map make-F ns)) b2))]
[((PolyDots: (list ns ... n-dotted) b1)
(PolyDots: (list ms ... m-dotted) b2))
(cond
[(< (length ns) (length ms))
(define-values (short-ms rest-ms) (split-at ms (length ns)))
;; substitute ms for ns in b1 to make it look like b2
(define subst
(hash-set (make-simple-substitution ns (map make-F short-ms))
n-dotted (i-subst/dotted (map make-F rest-ms) (make-F m-dotted) m-dotted)))
(subtype* A0 (subst-all subst b1) b2)]
[else
(define-values (short-ns rest-ns) (split-at ns (length ms)))
;; substitute ns for ms in b2 to make it look like b1
(define subst
(hash-set (make-simple-substitution ms (map make-F short-ns))
m-dotted (i-subst/dotted (map make-F rest-ns) (make-F n-dotted) n-dotted)))
(subtype* A0 b1 (subst-all subst b2))])]
[((PolyDots: (list ns ... n-dotted) b1)
(Poly: (list ms ...) b2))
(=> unmatch)
(unless (<= (length ns) (length ms))
(unmatch))
;; substitute ms for ns in b1 to make it look like b2
(define subst
(hash-set (make-simple-substitution ns (map make-F (take ms (length ns))))
n-dotted (i-subst (map make-F (drop ms (length ns))))))
(subtype* A0 (subst-all subst b1) b2)]
[((Refinement: par _) t)
(subtype* A0 par t)]
;; use unification to see if we can use the polytype here
[((Poly: vs b) s)
(=> unmatch)
(if (infer vs null (list b) (list s) Univ) A0 (unmatch))]
[((PolyDots: (list vs ... vdotted) b) s)
(=> unmatch)
(if (infer vs (list vdotted) (list b) (list s) Univ)
A0
(unmatch))]
[(s (or (Poly: vs b) (PolyDots: vs b)))
(=> unmatch)
(if (null? (fv b)) (subtype* A0 s b) (unmatch))]
;; rec types, applications and names (that aren't the same)
[((? needs-resolving? s) other)
(let ([s* (resolve-once s)])
(if (Type/c? s*) ;; needed in case this was a name that hasn't been resolved yet
(subtype* A0 s* other)
#f))]
[(other (? needs-resolving? t))
(let ([t* (resolve-once t)])
(if (Type/c? t*) ;; needed in case this was a name that hasn't been resolved yet
(subtype* A0 other t*)
#f))]
;; for unions, we check the cross-product
;; some special cases for better performance
;; first, if both types are numeric, they will be built from the same base types
;; so we can check for simple set inclusion of the union components
[((Base: _ _ _ _) (Union: l2))
(=> unmatch)
(if (and (eq? ks 'number) (eq? kt 'number))
(if (memq s l2) A0 #f)
(unmatch))]
[((Union: l1) (Union: l2))
(=> unmatch)
(if (and (eq? ks 'number) (eq? kt 'number))
;; l1 should be a subset of l2
;; since union elements are sorted, a linear scan works
(let loop ([l1 l1] [l2 l2])
(cond [(null? l1)
A0]
[(null? l2)
#f]
[(eq? (car l1) (car l2))
(loop (cdr l1) (cdr l2))]
[else
(loop l1 (cdr l2))]))
(unmatch))]
[((Union: (list e1 e2)) t)
(and (and (subtype* A0 e1 t) (subtype* A0 e2 t))
A0)]
[((Union: (list e1 e2 e3)) t)
(and (and (subtype* A0 e1 t) (subtype* A0 e2 t) (subtype* A0 e3 t))
A0)]
[((Union: es) t)
(and (for/and ([elem (in-list es)])
(subtype* A0 elem t))
A0)]
[(s (Union: es))
(and (for/or ([elem (in-list es)])
(subtype* A0 s elem))
A0)]
;; subtyping on immutable structs is covariant
[((Struct: nm _ flds proc _ _) (Struct: nm* _ flds* proc* _ _))
(=> unmatch)
(unless (free-identifier=? nm nm*) (unmatch))
(let ([A (cond [(and proc proc*) (subtype* A0 proc proc*)]
[proc* #f]
[else A0])])
(and A (subtype/flds* A flds flds*)))]
[((Struct: nm _ _ _ _ _) (StructTop: (Struct: nm* _ _ _ _ _)))
(=> unmatch)
(unless (free-identifier=? nm nm*) (unmatch))
A0]
;; Promises are covariant
[((Promise: s) (Promise: t))
(subtype* A0 s t)]
;ephemerons are covariant
[((Ephemeron: s) (Ephemeron: t))
(subtype* A0 s t)]
[((CustodianBox: s) (CustodianBox: t))
(subtype* A0 s t)]
[((Set: t) (Set: t*)) (subtype* A0 t t*)]
;; Evts are covariant
[((Evt: t) (Evt: t*)) (subtype* A0 t t*)]
[((Base: 'Semaphore _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'Output-Port _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'Input-Port _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'TCP-Listener _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'Thread _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'Subprocess _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'Will-Executor _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'LogReceiver _ _ _) (Evt: t))
(subtype* A0
(make-HeterogeneousVector
(list -Symbol -String Univ
(Un (-val #f) -Symbol)))
t)]
[((CustodianBox: t) (Evt: t*))
;; Note that it's the whole box type that's being
;; compared against t* here
(subtype* A0 s t*)]
[((Channel: t) (Evt: t*)) (subtype* A0 t t*)]
;; Invariant types
[((Box: s) (Box: t)) (type-equiv? A0 s t)]
[((Box: _) (BoxTop:)) A0]
[((ThreadCell: s) (ThreadCell: t)) (type-equiv? A0 s t)]
[((ThreadCell: _) (ThreadCellTop:)) A0]
[((Channel: s) (Channel: t)) (type-equiv? A0 s t)]
[((Channel: _) (ChannelTop:)) A0]
[((Vector: s) (Vector: t)) (type-equiv? A0 s t)]
[((Vector: _) (VectorTop:)) A0]
[((HeterogeneousVector: _) (VectorTop:)) A0]
[((HeterogeneousVector: (list e ...)) (Vector: e*))
(for/fold ((A A0)) ((e (in-list e)) #:break (not A))
(and A (type-equiv? A e e*)))]
[((HeterogeneousVector: (list s* ...)) (HeterogeneousVector: (list t* ...)))
(if (= (length s*) (length t*))
(for/fold ((A A0)) ((s (in-list s*)) (t (in-list t*)) #:break (not A))
(type-equiv? A s t))
#f)]
[((MPair: s1 s2) (MPair: t1 t2))
(subtype-seq A0
(type-equiv? s1 t1)
(type-equiv? s2 t2))]
[((MPair: _ _) (MPairTop:)) A0]
[((Hashtable: s1 s2) (Hashtable: t1 t2))
(subtype-seq A0
(type-equiv? s1 t1)
(type-equiv? s2 t2))]
[((Hashtable: _ _) (HashtableTop:)) A0]
[((Prompt-Tagof: s1 s2) (Prompt-Tagof: t1 t2))
(subtype-seq A0
(type-equiv? s1 t1)
(type-equiv? s2 t2))]
[((Prompt-Tagof: _ _) (Prompt-TagTop:)) A0]
[((Continuation-Mark-Keyof: s) (Continuation-Mark-Keyof: t))
(type-equiv? A0 s t)]
[((Continuation-Mark-Keyof: _) (Continuation-Mark-KeyTop:)) A0]
;; subtyping on structs follows the declared hierarchy
[((Struct: nm (? Type/c? parent) _ _ _ _) other)
;(dprintf "subtype - hierarchy : ~a ~a ~a\n" nm parent other)
(subtype* A0 parent other)]
;; subtyping on values is pointwise
[((Values: vals1) (Values: vals2)) (subtypes* A0 vals1 vals2)]
[((ValuesDots: s-rs s-dty dbound) (ValuesDots: t-rs t-dty dbound))
(subtype* (subtypes* A0 s-rs t-rs) s-dty t-dty)]
[((Result: t (FilterSet: ft ff) o) (Result: t* (FilterSet: ft* ff*) o))
(subtype-seq A0
(subtype* t t*)
(filter-subtype* ft ft*)
(filter-subtype* ff ff*))]
[((Result: t (FilterSet: ft ff) o) (Result: t* (FilterSet: ft* ff*) (Empty:)))
(subtype-seq A0
(subtype* t t*)
(filter-subtype* ft ft*)
(filter-subtype* ff ff*))]
;; subtyping on other stuff
[((Syntax: t) (Syntax: t*))
(subtype* A0 t t*)]
[((Future: t) (Future: t*))
(subtype* A0 t t*)]
[((Param: s-in s-out) (Param: t-in t-out))
(subtype-seq A0
(subtype* t-in s-in)
(subtype* s-out t-out))]
[((Param: in out) t)
(subtype* A0 (cl->* (-> out) (-> in -Void)) t)]
[((Instance: t) (Instance: t*))
(subtype* A0 t t*)]
[((Class: '() '() (list (and s (list names meths )) ...))
(Class: '() '() (list (and s* (list names* meths*)) ...)))
(for/fold ([A A0])
([n (in-list names*)] [m (in-list meths*)] #:break (not A))
(and A (cond [(assq n s) => (lambda (spec) (subtype* A (cadr spec) m))]
[else #f])))]
;; otherwise, not a subtype
[(_ _) #f #;(dprintf "failed")])))]))))
[else #f])))]
;; recur structurally on pairs
[((Pair: a d) (Pair: a* d*))
(subtypes* A0 (list a d) (list a* d*))]
;; recur structurally on dotted lists, assuming same bounds
[((ListDots: s-dty dbound) (ListDots: t-dty dbound*))
(and (eq? dbound dbound*)
(subtype* A0 s-dty t-dty))]
;; For dotted lists and regular lists, we check that (All (dbound) s-dty) is a subtype
;; of t-elem, so that no matter what dbound is instatiated with s-dty is still a subtype
;; of t-elem. We cannot just replace dbound with Univ because of variance issues.
[((ListDots: s-dty dbound) (Listof: t-elem))
(subtype* A0 (-poly (dbound) s-dty) t-elem)]
;; quantification over two types preserves subtyping
[((Poly: ns b1) (Poly: ms b2))
#:when (= (length ns) (length ms))
;; substitute ns for ms in b2 to make it look like b1
(subtype* A0 b1 (subst-all (make-simple-substitution ms (map make-F ns)) b2))]
[((PolyDots: (list ns ... n-dotted) b1)
(PolyDots: (list ms ... m-dotted) b2))
(cond
[(< (length ns) (length ms))
(define-values (short-ms rest-ms) (split-at ms (length ns)))
;; substitute ms for ns in b1 to make it look like b2
(define subst
(hash-set (make-simple-substitution ns (map make-F short-ms))
n-dotted (i-subst/dotted (map make-F rest-ms) (make-F m-dotted) m-dotted)))
(subtype* A0 (subst-all subst b1) b2)]
[else
(define-values (short-ns rest-ns) (split-at ns (length ms)))
;; substitute ns for ms in b2 to make it look like b1
(define subst
(hash-set (make-simple-substitution ms (map make-F short-ns))
m-dotted (i-subst/dotted (map make-F rest-ns) (make-F n-dotted) n-dotted)))
(subtype* A0 b1 (subst-all subst b2))])]
[((PolyDots: (list ns ... n-dotted) b1)
(Poly: (list ms ...) b2))
#:when (<= (length ns) (length ms))
;; substitute ms for ns in b1 to make it look like b2
(define subst
(hash-set (make-simple-substitution ns (map make-F (take ms (length ns))))
n-dotted (i-subst (map make-F (drop ms (length ns))))))
(subtype* A0 (subst-all subst b1) b2)]
[((Refinement: par _) t)
(subtype* A0 par t)]
;; use unification to see if we can use the polytype here
[((Poly: vs b) s)
#:when (infer vs null (list b) (list s) Univ)
A0]
[((PolyDots: (list vs ... vdotted) b) s)
#:when (infer vs (list vdotted) (list b) (list s) Univ)
A0]
[(s (or (Poly: vs b) (PolyDots: vs b)))
#:when (null? (fv b))
(subtype* A0 s b)]
;; rec types, applications and names (that aren't the same)
[((? needs-resolving? s) other)
(let ([s* (resolve-once s)])
(if (Type/c? s*) ;; needed in case this was a name that hasn't been resolved yet
(subtype* A0 s* other)
#f))]
[(other (? needs-resolving? t))
(let ([t* (resolve-once t)])
(if (Type/c? t*) ;; needed in case this was a name that hasn't been resolved yet
(subtype* A0 other t*)
#f))]
;; for unions, we check the cross-product
;; some special cases for better performance
;; first, if both types are numeric, they will be built from the same base types
;; so we can check for simple set inclusion of the union components
[((Base: _ _ _ #t) (Union: l2))
#:when (eq? kt 'number)
(and (memq s l2) A0)]
;; this appears to never be called
[((Union: l1) (Union: l2))
#:when (and (eq? ks 'number) (eq? kt 'number))
;; l1 should be a subset of l2
;; since union elements are sorted, a linear scan works
(let loop ([l1 l1] [l2 l2])
(cond [(null? l1)
A0]
[(null? l2)
#f]
[(eq? (car l1) (car l2))
(loop (cdr l1) (cdr l2))]
[else
(loop l1 (cdr l2))]))]
[((Union: es) t)
;(set! lengths (cons (length es) lengths))
(and
(for/and ([elem (in-list es)])
(subtype* A0 elem t))
A0)]
[(s (Union: es))
;(set! lengths (cons (length es) lengths))
(and (for/or ([elem (in-list es)])
(subtype* A0 s elem))
A0)]
;; subtyping on immutable structs is covariant
[((Struct: nm _ flds proc _ _) (Struct: nm* _ flds* proc* _ _))
#:when (free-identifier=? nm nm*)
(let ([A (cond [(and proc proc*) (subtype* A0 proc proc*)]
[proc* #f]
[else A0])])
(and A (subtype/flds* A flds flds*)))]
[((Struct: nm _ _ _ _ _) (StructTop: (Struct: nm* _ _ _ _ _)))
#:when (free-identifier=? nm nm*)
A0]
;; Promises are covariant
[((Promise: s) (Promise: t))
(subtype* A0 s t)]
;ephemerons are covariant
[((Ephemeron: s) (Ephemeron: t))
(subtype* A0 s t)]
[((CustodianBox: s) (CustodianBox: t))
(subtype* A0 s t)]
[((Set: t) (Set: t*)) (subtype* A0 t t*)]
;; Evts are covariant
[((Evt: t) (Evt: t*)) (subtype* A0 t t*)]
[((Base: 'Semaphore _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'Output-Port _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'Input-Port _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'TCP-Listener _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'Thread _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'Subprocess _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'Will-Executor _ _ _) (Evt: t))
(subtype* A0 s t)]
[((Base: 'LogReceiver _ _ _) (Evt: t))
(subtype* A0
(make-HeterogeneousVector
(list -Symbol -String Univ
(Un (-val #f) -Symbol)))
t)]
[((CustodianBox: t) (Evt: t*))
;; Note that it's the whole box type that's being
;; compared against t* here
(subtype* A0 s t*)]
[((Channel: t) (Evt: t*)) (subtype* A0 t t*)]
;; Invariant types
[((Box: s) (Box: t)) (type-equiv? A0 s t)]
[((Box: _) (BoxTop:)) A0]
[((ThreadCell: s) (ThreadCell: t)) (type-equiv? A0 s t)]
[((ThreadCell: _) (ThreadCellTop:)) A0]
[((Channel: s) (Channel: t)) (type-equiv? A0 s t)]
[((Channel: _) (ChannelTop:)) A0]
[((Vector: s) (Vector: t)) (type-equiv? A0 s t)]
[((Vector: _) (VectorTop:)) A0]
[((HeterogeneousVector: _) (VectorTop:)) A0]
[((HeterogeneousVector: (list e ...)) (Vector: e*))
(for/fold ((A A0)) ((e (in-list e)) #:break (not A))
(and A (type-equiv? A e e*)))]
[((HeterogeneousVector: (list s* ...)) (HeterogeneousVector: (list t* ...)))
(if (= (length s*) (length t*))
(for/fold ((A A0)) ((s (in-list s*)) (t (in-list t*)) #:break (not A))
(type-equiv? A s t))
#f)]
[((MPair: s1 s2) (MPair: t1 t2))
(subtype-seq A0
(type-equiv? s1 t1)
(type-equiv? s2 t2))]
[((MPair: _ _) (MPairTop:)) A0]
[((Hashtable: s1 s2) (Hashtable: t1 t2))
(subtype-seq A0
(type-equiv? s1 t1)
(type-equiv? s2 t2))]
[((Hashtable: _ _) (HashtableTop:)) A0]
[((Prompt-Tagof: s1 s2) (Prompt-Tagof: t1 t2))
(subtype-seq A0
(type-equiv? s1 t1)
(type-equiv? s2 t2))]
[((Prompt-Tagof: _ _) (Prompt-TagTop:)) A0]
[((Continuation-Mark-Keyof: s) (Continuation-Mark-Keyof: t))
(type-equiv? A0 s t)]
[((Continuation-Mark-Keyof: _) (Continuation-Mark-KeyTop:)) A0]
;; subtyping on structs follows the declared hierarchy
[((Struct: nm (? Type/c? parent) _ _ _ _) other)
;(dprintf "subtype - hierarchy : ~a ~a ~a\n" nm parent other)
(subtype* A0 parent other)]
;; subtyping on values is pointwise
[((Values: vals1) (Values: vals2)) (subtypes* A0 vals1 vals2)]
[((ValuesDots: s-rs s-dty dbound) (ValuesDots: t-rs t-dty dbound))
(subtype* (subtypes* A0 s-rs t-rs) s-dty t-dty)]
[((Result: t (FilterSet: ft ff) o) (Result: t* (FilterSet: ft* ff*) o))
(subtype-seq A0
(subtype* t t*)
(filter-subtype* ft ft*)
(filter-subtype* ff ff*))]
[((Result: t (FilterSet: ft ff) o) (Result: t* (FilterSet: ft* ff*) (Empty:)))
(subtype-seq A0
(subtype* t t*)
(filter-subtype* ft ft*)
(filter-subtype* ff ff*))]
;; subtyping on other stuff
[((Syntax: t) (Syntax: t*))
(subtype* A0 t t*)]
[((Future: t) (Future: t*))
(subtype* A0 t t*)]
[((Param: s-in s-out) (Param: t-in t-out))
(subtype-seq A0
(subtype* t-in s-in)
(subtype* s-out t-out))]
[((Param: in out) t)
(subtype* A0 (cl->* (-> out) (-> in -Void)) t)]
[((Instance: t) (Instance: t*))
(subtype* A0 t t*)]
[((Class: '() '() (list (and s (list names meths )) ...))
(Class: '() '() (list (and s* (list names* meths*)) ...)))
(for/fold ([A A0])
([n (in-list names*)] [m (in-list meths*)] #:break (not A))
(and A (cond [(assq n s) => (lambda (spec) (subtype* A (cadr spec) m))]
[else #f])))]
;; otherwise, not a subtype
[(_ _) #f])))
(when (null? A)
(hash-set! subtype-cache (cons ss st) r))
r))
(define (type-compare? a b)
(and (subtype a b) (subtype b a)))
(or (type-equal? a b)
(and (subtype a b) (subtype b a))))
;; List[(cons Number Number)] type type -> maybe[List[(cons Number Number)]]
(define subtype*/no-fail subtype*)

View File

@ -165,7 +165,7 @@ at least theoretically.
(lambda (stx)
(syntax-parse stx
[(_ head cnt . body)
#'(define head . body)]))))
(syntax/loc stx (define head . body))]))))
(define-syntax define-struct/cond-contract
(if enable-contracts?