Documentation of tangent-number, quadratic-solutions, quadratic-residue and quadratic-character
This commit is contained in:
parent
63b5f47989
commit
0af1cb034e
|
@ -20,7 +20,7 @@
|
|||
(parameterize ([sandbox-output 'string]
|
||||
[sandbox-error-output 'string])
|
||||
(make-evaluator 'racket)))
|
||||
;(interaction-eval #:eval math-eval (require racket math))
|
||||
@;(interaction-eval #:eval math-eval (require racket math))
|
||||
|
||||
|
||||
@title[#:tag "number-theory" #:style '(toc)]{Number Theory}
|
||||
|
@ -59,10 +59,6 @@
|
|||
@; http://en.wikipedia.org/wiki/B%C3%A9zout's_identity
|
||||
}
|
||||
|
||||
@defproc[(bezout-binary [a Integer] [b Integer]) (Listof Integer)]{
|
||||
Same as @racket[bezout] but restricted to two arguments.
|
||||
}
|
||||
|
||||
@defproc[(coprime? [a Integer] [b Integer] ...) boolean?]{
|
||||
Returns @racket[#t] if the integers @racket[a],@racket[b],... are coprime.
|
||||
|
||||
|
@ -128,6 +124,35 @@
|
|||
@; http://en.wikipedia.org/wiki/Chinese_remainder_theorem
|
||||
}
|
||||
|
||||
@defproc[(quadratic-residue? [a natural?] [n natural?]) boolean?]{
|
||||
Returns @racket[#t] if @racket[a] is a quadratic residue modulo @racket[n],
|
||||
otherwise @racket[#f] is returned.
|
||||
|
||||
A number @racket[a] is a quadratic residue modulo @racket[n], if there
|
||||
exists a number @racket[x] such that @math-style{x^2=a mod n}.
|
||||
@interaction[(require math)
|
||||
(quadratic-residue? 0 4)
|
||||
(quadratic-residue? 1 4)
|
||||
(quadratic-residue? 2 4)
|
||||
(quadratic-residue? 3 4)]
|
||||
}
|
||||
|
||||
@defproc[(quadratic-character [a natural?] [p prime?]) (union -1 1)]{
|
||||
Returns the values of the quadratic character modulo the prime @racket[p].
|
||||
That is, for a non-zero @racket[a] the number @racket[1] is returned when
|
||||
@racket[a] is a quadratic residue,
|
||||
and @racket[-1] is returned when @racket[a] is a non-residue.
|
||||
If @racket[a] is zero, then @racket[0] is returned.
|
||||
|
||||
This function is also known as the @emph{Legendre Symbol}.
|
||||
|
||||
@interaction[(require math)
|
||||
(quadratic-character 0 4)
|
||||
(quadratic-character 1 4)
|
||||
(quadratic-character 2 4)
|
||||
(quadratic-character 3 4)]
|
||||
}
|
||||
|
||||
|
||||
@; ----------------------------------------
|
||||
@section[#:tag "primes"]{Primes}
|
||||
|
@ -448,8 +473,9 @@ Note: The function @racket[divisor-sum] is multiplicative.
|
|||
|
||||
@defproc[(fibonacci [n Natural]) natural?]{
|
||||
Returns the @racket[n]th Fibonacci number.
|
||||
Definition:
|
||||
@url{http://en.wikipedia.org/wiki/Fibonacci_number}.
|
||||
See
|
||||
@url{http://en.wikipedia.org/wiki/Fibonacci_number}
|
||||
for a definition.
|
||||
|
||||
The ten first Fibonacci numbers.
|
||||
@interaction[(require math racket)
|
||||
|
@ -469,14 +495,20 @@ Returns a list of the numbers in the @racket[n]th Farey sequence.
|
|||
The @racket[n]th Farey sequence is the sequence of all
|
||||
completely reduced rational numbers from 0 to 1 which denominators
|
||||
are less than or equal to @racket[n].
|
||||
@interaction[(require math racket)
|
||||
@interaction[(require math)
|
||||
(farey 1)
|
||||
(farey 2)
|
||||
(farey 3)]
|
||||
}
|
||||
|
||||
@; ----------------------------------------
|
||||
@section[#:tag "quadratic-residues"]{Quadratic Residues}
|
||||
@defproc[(tangent-number [n integer?]) integer?]{
|
||||
Returns the @racket[n]th tangent number.
|
||||
See @url{http://mathworld.wolfram.com/TangentNumber.html} for a definition.
|
||||
@interaction[(require math)
|
||||
(tangent-number 1)
|
||||
(tangent-number 2)
|
||||
(tangent-number 3)]
|
||||
}
|
||||
|
||||
|
||||
@; ----------------------------------------
|
||||
|
@ -563,6 +595,8 @@ type of polygonal number.
|
|||
}
|
||||
|
||||
|
||||
@; ----------------------------------------
|
||||
|
||||
@section[#:tag "fractions"]{Fractions}
|
||||
@defproc[(mediant [x Rational] [y Rational]) rational?]{
|
||||
Computes the @racket[mediant] of the numbers @racket[x] and @racket[y].
|
||||
|
@ -572,5 +606,31 @@ lowest term is the number @math-style{(p+r)/(q+s)}.
|
|||
(mediant 1/2 5/6)]
|
||||
}
|
||||
|
||||
@(close-eval untyped-eval)
|
||||
|
||||
|
||||
@; ----------------------------------------
|
||||
@section[#:tag "quadratics"]{The Quadratic Equation}
|
||||
|
||||
@defproc[(quadratic-solutions [a Real] [b Real] [c Real]) (listof Real)]{
|
||||
Returns a list of all real solutions to the equation @math-style{a x^2 + b x +c = 0}.
|
||||
@interaction[(require math)
|
||||
(quadratic-solutions 1 0 -1)
|
||||
(quadratic-solutions 1 2 1)
|
||||
(quadratic-solutions 1 0 1)]
|
||||
}
|
||||
|
||||
@defproc[(quadratic-integer-solutions [a Real] [b Real] [c Real]) (listof Integer)]{
|
||||
Returns a list of all integer solutions to the equation @math-style{a x^2 + b x +c = 0}.
|
||||
@interaction[(require math)
|
||||
(quadratic-integer-solutions 1 0 -1)
|
||||
(quadratic-integer-solutions 1 0 -2)]
|
||||
}
|
||||
|
||||
@defproc[(quadratic-natural-solutions [a Real] [b Real] [c Real]) (listof Natural)]{
|
||||
Returns a list of all natural solutions to the equation @math-style{a x^2 + b x +c = 0}.
|
||||
@interaction[(require math)
|
||||
(quadratic-natural-solutions 1 0 -1)
|
||||
(quadratic-natural-solutions 1 0 -2)]
|
||||
}
|
||||
|
||||
@(close-eval untyped-eval)
|
Loading…
Reference in New Issue
Block a user