Note that integer-sqrt produces exact output when given exact input.

Closes PR 9542.
This commit is contained in:
Danny Yoo 2013-02-20 16:35:33 -07:00
parent 9e26cd0b7a
commit 0b0ce6574a

View File

@ -511,11 +511,12 @@ Returns the principal @as-index{square root} of @racket[z]. The
@defproc[(integer-sqrt [n integer?]) complex?]{
Returns @racket[(floor (sqrt n))] for positive @racket[n]. For
Returns @racket[(floor (sqrt n))] for positive @racket[n]. The
result is exact if @racket[n] is exact. For
negative @racket[n], the result is @racket[(* (integer-sqrt (- n))
0+i)].
@mz-examples[(integer-sqrt 4.0) (integer-sqrt 5)]}
@mz-examples[(integer-sqrt 4.0) (integer-sqrt 5) (integer-sqrt -4.0) (integer-sqrt -4)]}
@defproc[(integer-sqrt/remainder [n integer?])