Move margin-note* in math docs to work around issue with Firefox

Please merge to v6.1
(cherry picked from commit 3849643e4b)
This commit is contained in:
Neil Toronto 2014-07-23 11:20:03 -04:00 committed by Ryan Culpepper
parent e9580ad006
commit 1818bf9a42

View File

@ -252,8 +252,8 @@ The length of @racket[xs] must be positive.
@define[block-diagonal-url]{http://en.wikipedia.org/wiki/Block_matrix#Block_diagonal_matrices} @define[block-diagonal-url]{http://en.wikipedia.org/wiki/Block_matrix#Block_diagonal_matrices}
@margin-note*{@hyperlink[block-diagonal-url]{Wikipedia: Block-diagonal matrices}}
@defproc[(block-diagonal-matrix [Xs (Listof (Matrix A))] [zero A 0]) (Matrix A)]{ @defproc[(block-diagonal-matrix [Xs (Listof (Matrix A))] [zero A 0]) (Matrix A)]{
@margin-note*{@hyperlink[block-diagonal-url]{Wikipedia: Block-diagonal matrices}}
Returns a matrix with matrices @racket[Xs] along the diagonal and @racket[zero] everywhere else. Returns a matrix with matrices @racket[Xs] along the diagonal and @racket[zero] everywhere else.
The length of @racket[Xs] must be positive. The length of @racket[Xs] must be positive.
@examples[#:eval typed-eval @examples[#:eval typed-eval
@ -268,8 +268,8 @@ The length of @racket[Xs] must be positive.
@define[vandermonde-url]{http://en.wikipedia.org/wiki/Vandermonde_matrix} @define[vandermonde-url]{http://en.wikipedia.org/wiki/Vandermonde_matrix}
@margin-note*{@hyperlink[vandermonde-url]{Wikipedia: Vandermonde matrix}}
@defproc[(vandermonde-matrix [xs (Listof Number)] [n Integer]) (Matrix Number)]{ @defproc[(vandermonde-matrix [xs (Listof Number)] [n Integer]) (Matrix Number)]{
@margin-note*{@hyperlink[vandermonde-url]{Wikipedia: Vandermonde matrix}}
Returns an @racket[m]×@racket[n] Vandermonde matrix, where @racket[m = (length xs)]. Returns an @racket[m]×@racket[n] Vandermonde matrix, where @racket[m = (length xs)].
@examples[#:eval typed-eval @examples[#:eval typed-eval
(vandermonde-matrix '(1 2 3 4) 5) (vandermonde-matrix '(1 2 3 4) 5)
@ -565,10 +565,10 @@ Returns a matrix where each entry of the given matrix is conjugated.
(matrix-conjugate (matrix ([1 +i] [-1 2+i])))] (matrix-conjugate (matrix ([1 +i] [-1 2+i])))]
} }
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Transpose"]{Wikipedia: Transpose}}
@deftogether[(@defproc[(matrix-transpose [M (Matrix A)]) (Matrix A)] @deftogether[(@defproc[(matrix-transpose [M (Matrix A)]) (Matrix A)]
@defproc[(matrix-hermitian [M (Matrix Number)]) (Matrix Number)])]{ @defproc[(matrix-hermitian [M (Matrix Number)]) (Matrix Number)])]{
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Hermitian_matrix"]{Wikipedia: Hermitian}} @margin-note*{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Transpose"]{Transpose},
@hyperlink["http://en.wikipedia.org/wiki/Hermitian_matrix"]{Hermitian}}
Returns the transpose or the hermitian of the matrix. Returns the transpose or the hermitian of the matrix.
The hermitian of a matrix is the conjugate of the transposed matrix. The hermitian of a matrix is the conjugate of the transposed matrix.
For a real matrix these operations return the the same result. For a real matrix these operations return the the same result.
@ -577,8 +577,8 @@ For a real matrix these operations return the the same result.
(matrix-hermitian (matrix ([1 +i] [2 +2i] [3 +3i])))] (matrix-hermitian (matrix ([1 +i] [2 +2i] [3 +3i])))]
} }
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Trace_(linear_algebra)"]{Wikipedia: Trace}}
@defproc[(matrix-trace [M (Matrix Number)]) Number]{ @defproc[(matrix-trace [M (Matrix Number)]) Number]{
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Trace_(linear_algebra)"]{Wikipedia: Trace}}
Returns the trace of the square matrix. The trace of matrix is the Returns the trace of the square matrix. The trace of matrix is the
the sum of the diagonal entries. the sum of the diagonal entries.
@examples[#:eval untyped-eval @examples[#:eval untyped-eval
@ -602,11 +602,11 @@ reasonable criteria (specifically, it is submultiplicative).
See @secref{matrix:op-norm} for similar functions (e.g. norms and angles) defined by considering See @secref{matrix:op-norm} for similar functions (e.g. norms and angles) defined by considering
matrices as operators between inner product spaces consisting of column matrices. matrices as operators between inner product spaces consisting of column matrices.
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Norm_(mathematics)"]{Wikipedia: Norm}}
@deftogether[(@defproc[(matrix-1norm [M (Matrix Number)]) Nonnegative-Real] @deftogether[(@defproc[(matrix-1norm [M (Matrix Number)]) Nonnegative-Real]
@defproc[(matrix-2norm [M (Matrix Number)]) Nonnegative-Real] @defproc[(matrix-2norm [M (Matrix Number)]) Nonnegative-Real]
@defproc[(matrix-inf-norm [M (Matrix Number)]) Nonnegative-Real] @defproc[(matrix-inf-norm [M (Matrix Number)]) Nonnegative-Real]
@defproc[(matrix-norm [M (Matrix Number)] [p Real 2]) Nonnegative-Real])]{ @defproc[(matrix-norm [M (Matrix Number)] [p Real 2]) Nonnegative-Real])]{
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Norm_(mathematics)"]{Wikipedia: Norm}}
Respectively compute the L@subscript{1} norm, L@subscript{2} norm, L@subscript{∞}, and Respectively compute the L@subscript{1} norm, L@subscript{2} norm, L@subscript{∞}, and
L@subscript{p} norm. L@subscript{p} norm.
@ -745,8 +745,8 @@ polynomials.
} }
@define[inverse-url]{http://en.wikipedia.org/wiki/Invertible_matrix} @define[inverse-url]{http://en.wikipedia.org/wiki/Invertible_matrix}
@margin-note*{@hyperlink[inverse-url]{Wikipedia: Invertible Matrix}}
@defproc[(matrix-inverse [M (Matrix Number)] [fail (-> F) (λ () (error ...))]) (U F (Matrix Number))]{ @defproc[(matrix-inverse [M (Matrix Number)] [fail (-> F) (λ () (error ...))]) (U F (Matrix Number))]{
@margin-note*{@hyperlink[inverse-url]{Wikipedia: Invertible Matrix}}
Returns the inverse of @racket[M] if it exists; otherwise returns the result of applying the Returns the inverse of @racket[M] if it exists; otherwise returns the result of applying the
@tech{failure thunk} @racket[fail]. @tech{failure thunk} @racket[fail].
@examples[#:eval typed-eval @examples[#:eval typed-eval
@ -761,8 +761,8 @@ Returns @racket[#t] when @racket[M] is a @racket[square-matrix?] and @racket[(ma
is nonzero. is nonzero.
} }
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Determinant"]{Wikipedia: Determinant}}
@defproc[(matrix-determinant [M (Matrix Number)]) Number]{ @defproc[(matrix-determinant [M (Matrix Number)]) Number]{
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Determinant"]{Wikipedia: Determinant}}
Returns the determinant of @racket[M], which must be a @racket[square-matrix?]. Returns the determinant of @racket[M], which must be a @racket[square-matrix?].
@examples[#:eval typed-eval @examples[#:eval typed-eval
(matrix-determinant (diagonal-matrix '(1 2 3 4))) (matrix-determinant (diagonal-matrix '(1 2 3 4)))
@ -780,13 +780,13 @@ Returns the determinant of @racket[M], which must be a @racket[square-matrix?].
@define[gauss-url]{http://en.wikipedia.org/wiki/Gaussian_elimination} @define[gauss-url]{http://en.wikipedia.org/wiki/Gaussian_elimination}
@define[gauss-jordan-url]{http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination} @define[gauss-jordan-url]{http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination}
@margin-note*{@hyperlink[gauss-url]{Wikipedia: Gaussian elimination}}
@defproc[(matrix-gauss-elim [M (Matrix Number)] @defproc[(matrix-gauss-elim [M (Matrix Number)]
[jordan? Any #f] [jordan? Any #f]
[unitize-pivot? Any #f] [unitize-pivot? Any #f]
[pivoting (U 'first 'partial) 'partial]) [pivoting (U 'first 'partial) 'partial])
(Values (Matrix Number) (Listof Index))]{ (Values (Matrix Number) (Listof Index))]{
@margin-note*{@hyperlink[gauss-jordan-url]{Wikipedia: Gauss-Jordan elimination}} @margin-note*{Wikipedia: @hyperlink[gauss-url]{Gaussian elimination},
@hyperlink[gauss-jordan-url]{Gauss-Jordan elimination}}
Implements Gaussian elimination or Gauss-Jordan elimination. Implements Gaussian elimination or Gauss-Jordan elimination.
If @racket[jordan?] is true, row operations are done both above and below the pivot. If @racket[jordan?] is true, row operations are done both above and below the pivot.
@ -807,12 +807,12 @@ See @racket[matrix-row-echelon] for examples.
@define[row-echelon-url]{http://en.wikipedia.org/wiki/Row_echelon_form} @define[row-echelon-url]{http://en.wikipedia.org/wiki/Row_echelon_form}
@margin-note*{@hyperlink[row-echelon-url]{Wikipedia: Row echelon form}}
@defproc[(matrix-row-echelon [M (Matrix Number)] @defproc[(matrix-row-echelon [M (Matrix Number)]
[jordan? Any #f] [jordan? Any #f]
[unitize-pivot? Any #f] [unitize-pivot? Any #f]
[pivoting (U 'first 'partial) 'partial]) [pivoting (U 'first 'partial) 'partial])
(Matrix Number)]{ (Matrix Number)]{
@margin-note*{@hyperlink[row-echelon-url]{Wikipedia: Row echelon form}}
Like @racket[matrix-gauss-elim], but returns only the result of Gaussian elimination. Like @racket[matrix-gauss-elim], but returns only the result of Gaussian elimination.
@examples[#:eval typed-eval @examples[#:eval typed-eval
(define M (matrix [[2 1 -1] [-3 -1 2] [-2 1 2]])) (define M (matrix [[2 1 -1] [-3 -1 2] [-2 1 2]]))
@ -837,9 +837,9 @@ Using @racket[matrix-row-echelon] to invert a matrix (also without checking for
} }
@define[lu-url]{http://en.wikipedia.org/wiki/LU_decomposition} @define[lu-url]{http://en.wikipedia.org/wiki/LU_decomposition}
@margin-note*{@hyperlink[lu-url]{Wikipedia: LU decomposition}}
@defproc[(matrix-lu [M (Matrix Number)] [fail (-> F) (λ () (error ...))]) @defproc[(matrix-lu [M (Matrix Number)] [fail (-> F) (λ () (error ...))])
(Values (U F (Matrix Number)) (Matrix Number))]{ (Values (U F (Matrix Number)) (Matrix Number))]{
@margin-note*{@hyperlink[lu-url]{Wikipedia: LU decomposition}}
Returns the LU decomposition of @racket[M] (which must be a @racket[square-matrix?]) if one exists. Returns the LU decomposition of @racket[M] (which must be a @racket[square-matrix?]) if one exists.
An LU decomposition exists if @racket[M] can be put in row-echelon form without swapping rows. An LU decomposition exists if @racket[M] can be put in row-echelon form without swapping rows.
@ -868,9 +868,9 @@ If @racket[M] does not have an LU decomposition, the first result is the result
@define[gram-schmidt-url]{http://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process} @define[gram-schmidt-url]{http://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process}
@define[reortho-pdf]{http://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf} @define[reortho-pdf]{http://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf}
@margin-note*{@hyperlink[gram-schmidt-url]{Wikipedia: Gram-Schmidt process}}
@defproc[(matrix-gram-schmidt [M (Matrix Number)] [normalize? Any #f] [start-col Integer 0]) @defproc[(matrix-gram-schmidt [M (Matrix Number)] [normalize? Any #f] [start-col Integer 0])
(Array Number)]{ (Array Number)]{
@margin-note*{@hyperlink[gram-schmidt-url]{Wikipedia: Gram-Schmidt process}}
Returns an array whose columns are orthogonal and span the same subspace as @racket[M]'s columns. Returns an array whose columns are orthogonal and span the same subspace as @racket[M]'s columns.
The number of columns in the result is the rank of @racket[M]. The number of columns in the result is the rank of @racket[M].
If @racket[normalize?] is true, the columns are also normalized. If @racket[normalize?] is true, the columns are also normalized.
@ -919,9 +919,9 @@ normalized.
@define[qr-url]{http://en.wikipedia.org/wiki/QR_decomposition} @define[qr-url]{http://en.wikipedia.org/wiki/QR_decomposition}
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/QR_decomposition"]{Wikipedia: QR decomposition}}
@defproc*[([(matrix-qr [M (Matrix Number)]) (Values (Matrix Number) (Matrix Number))] @defproc*[([(matrix-qr [M (Matrix Number)]) (Values (Matrix Number) (Matrix Number))]
[(matrix-qr [M (Matrix Number)] [full? Any]) (Values (Matrix Number) (Matrix Number))])]{ [(matrix-qr [M (Matrix Number)] [full? Any]) (Values (Matrix Number) (Matrix Number))])]{
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/QR_decomposition"]{Wikipedia: QR decomposition}}
Computes a QR-decomposition of the matrix @racket[M]. The values returned are Computes a QR-decomposition of the matrix @racket[M]. The values returned are
the matrices @racket[Q] and @racket[R]. If @racket[full?] is @racket[#f], then the matrices @racket[Q] and @racket[R]. If @racket[full?] is @racket[#f], then
a reduced decomposition is returned, otherwise a full decomposition is returned. a reduced decomposition is returned, otherwise a full decomposition is returned.