Move margin-note* in math docs to work around issue with Firefox

Please merge to v6.1
(cherry picked from commit 3849643e4b)
This commit is contained in:
Neil Toronto 2014-07-23 11:20:03 -04:00 committed by Ryan Culpepper
parent e9580ad006
commit 1818bf9a42

View File

@ -252,8 +252,8 @@ The length of @racket[xs] must be positive.
@define[block-diagonal-url]{http://en.wikipedia.org/wiki/Block_matrix#Block_diagonal_matrices}
@margin-note*{@hyperlink[block-diagonal-url]{Wikipedia: Block-diagonal matrices}}
@defproc[(block-diagonal-matrix [Xs (Listof (Matrix A))] [zero A 0]) (Matrix A)]{
@margin-note*{@hyperlink[block-diagonal-url]{Wikipedia: Block-diagonal matrices}}
Returns a matrix with matrices @racket[Xs] along the diagonal and @racket[zero] everywhere else.
The length of @racket[Xs] must be positive.
@examples[#:eval typed-eval
@ -268,8 +268,8 @@ The length of @racket[Xs] must be positive.
@define[vandermonde-url]{http://en.wikipedia.org/wiki/Vandermonde_matrix}
@margin-note*{@hyperlink[vandermonde-url]{Wikipedia: Vandermonde matrix}}
@defproc[(vandermonde-matrix [xs (Listof Number)] [n Integer]) (Matrix Number)]{
@margin-note*{@hyperlink[vandermonde-url]{Wikipedia: Vandermonde matrix}}
Returns an @racket[m]×@racket[n] Vandermonde matrix, where @racket[m = (length xs)].
@examples[#:eval typed-eval
(vandermonde-matrix '(1 2 3 4) 5)
@ -565,10 +565,10 @@ Returns a matrix where each entry of the given matrix is conjugated.
(matrix-conjugate (matrix ([1 +i] [-1 2+i])))]
}
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Transpose"]{Wikipedia: Transpose}}
@deftogether[(@defproc[(matrix-transpose [M (Matrix A)]) (Matrix A)]
@defproc[(matrix-hermitian [M (Matrix Number)]) (Matrix Number)])]{
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Hermitian_matrix"]{Wikipedia: Hermitian}}
@margin-note*{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Transpose"]{Transpose},
@hyperlink["http://en.wikipedia.org/wiki/Hermitian_matrix"]{Hermitian}}
Returns the transpose or the hermitian of the matrix.
The hermitian of a matrix is the conjugate of the transposed matrix.
For a real matrix these operations return the the same result.
@ -577,8 +577,8 @@ For a real matrix these operations return the the same result.
(matrix-hermitian (matrix ([1 +i] [2 +2i] [3 +3i])))]
}
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Trace_(linear_algebra)"]{Wikipedia: Trace}}
@defproc[(matrix-trace [M (Matrix Number)]) Number]{
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Trace_(linear_algebra)"]{Wikipedia: Trace}}
Returns the trace of the square matrix. The trace of matrix is the
the sum of the diagonal entries.
@examples[#:eval untyped-eval
@ -602,11 +602,11 @@ reasonable criteria (specifically, it is submultiplicative).
See @secref{matrix:op-norm} for similar functions (e.g. norms and angles) defined by considering
matrices as operators between inner product spaces consisting of column matrices.
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Norm_(mathematics)"]{Wikipedia: Norm}}
@deftogether[(@defproc[(matrix-1norm [M (Matrix Number)]) Nonnegative-Real]
@defproc[(matrix-2norm [M (Matrix Number)]) Nonnegative-Real]
@defproc[(matrix-inf-norm [M (Matrix Number)]) Nonnegative-Real]
@defproc[(matrix-norm [M (Matrix Number)] [p Real 2]) Nonnegative-Real])]{
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Norm_(mathematics)"]{Wikipedia: Norm}}
Respectively compute the L@subscript{1} norm, L@subscript{2} norm, L@subscript{∞}, and
L@subscript{p} norm.
@ -745,8 +745,8 @@ polynomials.
}
@define[inverse-url]{http://en.wikipedia.org/wiki/Invertible_matrix}
@margin-note*{@hyperlink[inverse-url]{Wikipedia: Invertible Matrix}}
@defproc[(matrix-inverse [M (Matrix Number)] [fail (-> F) (λ () (error ...))]) (U F (Matrix Number))]{
@margin-note*{@hyperlink[inverse-url]{Wikipedia: Invertible Matrix}}
Returns the inverse of @racket[M] if it exists; otherwise returns the result of applying the
@tech{failure thunk} @racket[fail].
@examples[#:eval typed-eval
@ -761,8 +761,8 @@ Returns @racket[#t] when @racket[M] is a @racket[square-matrix?] and @racket[(ma
is nonzero.
}
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Determinant"]{Wikipedia: Determinant}}
@defproc[(matrix-determinant [M (Matrix Number)]) Number]{
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/Determinant"]{Wikipedia: Determinant}}
Returns the determinant of @racket[M], which must be a @racket[square-matrix?].
@examples[#:eval typed-eval
(matrix-determinant (diagonal-matrix '(1 2 3 4)))
@ -780,13 +780,13 @@ Returns the determinant of @racket[M], which must be a @racket[square-matrix?].
@define[gauss-url]{http://en.wikipedia.org/wiki/Gaussian_elimination}
@define[gauss-jordan-url]{http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination}
@margin-note*{@hyperlink[gauss-url]{Wikipedia: Gaussian elimination}}
@defproc[(matrix-gauss-elim [M (Matrix Number)]
[jordan? Any #f]
[unitize-pivot? Any #f]
[pivoting (U 'first 'partial) 'partial])
(Values (Matrix Number) (Listof Index))]{
@margin-note*{@hyperlink[gauss-jordan-url]{Wikipedia: Gauss-Jordan elimination}}
@margin-note*{Wikipedia: @hyperlink[gauss-url]{Gaussian elimination},
@hyperlink[gauss-jordan-url]{Gauss-Jordan elimination}}
Implements Gaussian elimination or Gauss-Jordan elimination.
If @racket[jordan?] is true, row operations are done both above and below the pivot.
@ -807,12 +807,12 @@ See @racket[matrix-row-echelon] for examples.
@define[row-echelon-url]{http://en.wikipedia.org/wiki/Row_echelon_form}
@margin-note*{@hyperlink[row-echelon-url]{Wikipedia: Row echelon form}}
@defproc[(matrix-row-echelon [M (Matrix Number)]
[jordan? Any #f]
[unitize-pivot? Any #f]
[pivoting (U 'first 'partial) 'partial])
(Matrix Number)]{
@margin-note*{@hyperlink[row-echelon-url]{Wikipedia: Row echelon form}}
Like @racket[matrix-gauss-elim], but returns only the result of Gaussian elimination.
@examples[#:eval typed-eval
(define M (matrix [[2 1 -1] [-3 -1 2] [-2 1 2]]))
@ -837,9 +837,9 @@ Using @racket[matrix-row-echelon] to invert a matrix (also without checking for
}
@define[lu-url]{http://en.wikipedia.org/wiki/LU_decomposition}
@margin-note*{@hyperlink[lu-url]{Wikipedia: LU decomposition}}
@defproc[(matrix-lu [M (Matrix Number)] [fail (-> F) (λ () (error ...))])
(Values (U F (Matrix Number)) (Matrix Number))]{
@margin-note*{@hyperlink[lu-url]{Wikipedia: LU decomposition}}
Returns the LU decomposition of @racket[M] (which must be a @racket[square-matrix?]) if one exists.
An LU decomposition exists if @racket[M] can be put in row-echelon form without swapping rows.
@ -868,9 +868,9 @@ If @racket[M] does not have an LU decomposition, the first result is the result
@define[gram-schmidt-url]{http://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process}
@define[reortho-pdf]{http://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf}
@margin-note*{@hyperlink[gram-schmidt-url]{Wikipedia: Gram-Schmidt process}}
@defproc[(matrix-gram-schmidt [M (Matrix Number)] [normalize? Any #f] [start-col Integer 0])
(Array Number)]{
@margin-note*{@hyperlink[gram-schmidt-url]{Wikipedia: Gram-Schmidt process}}
Returns an array whose columns are orthogonal and span the same subspace as @racket[M]'s columns.
The number of columns in the result is the rank of @racket[M].
If @racket[normalize?] is true, the columns are also normalized.
@ -919,9 +919,9 @@ normalized.
@define[qr-url]{http://en.wikipedia.org/wiki/QR_decomposition}
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/QR_decomposition"]{Wikipedia: QR decomposition}}
@defproc*[([(matrix-qr [M (Matrix Number)]) (Values (Matrix Number) (Matrix Number))]
[(matrix-qr [M (Matrix Number)] [full? Any]) (Values (Matrix Number) (Matrix Number))])]{
@margin-note*{@hyperlink["http://en.wikipedia.org/wiki/QR_decomposition"]{Wikipedia: QR decomposition}}
Computes a QR-decomposition of the matrix @racket[M]. The values returned are
the matrices @racket[Q] and @racket[R]. If @racket[full?] is @racket[#f], then
a reduced decomposition is returned, otherwise a full decomposition is returned.