From 2f74b6087d454d9834eb3688ed0aef75ea74843b Mon Sep 17 00:00:00 2001 From: Spencer Florence Date: Thu, 15 Nov 2018 15:22:03 -0600 Subject: [PATCH] explicate docs for make-rectangular and make-polar --- pkgs/racket-doc/scribblings/reference/numbers.scrbl | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/pkgs/racket-doc/scribblings/reference/numbers.scrbl b/pkgs/racket-doc/scribblings/reference/numbers.scrbl index f92d1706b9..bf1acead2b 100644 --- a/pkgs/racket-doc/scribblings/reference/numbers.scrbl +++ b/pkgs/racket-doc/scribblings/reference/numbers.scrbl @@ -709,14 +709,18 @@ In the two-argument case, the result is roughly the same as @racket[ @defproc[(make-rectangular [x real?] [y real?]) number?]{ -Returns @racket[(+ x (* y 0+1i))]. +Creates a complex number with @racket[x] as the real part +and @racket[y] as the imaginary part. That is, returns @racket[(+ x (* y 0+1i))]. @mz-examples[(make-rectangular 3 4.0)]} @defproc[(make-polar [magnitude real?] [angle real?]) number?]{ -Returns @racket[(+ (* magnitude (cos angle)) (* magnitude (sin angle) +Creates a complex number which, if thought of as a point, +is @racket[magnitude] away from the origin and is rotated +@racket[angle] radians counter clockwise from the positive x-axis. +That is, returns @racket[(+ (* magnitude (cos angle)) (* magnitude (sin angle) 0+1i))]. @mz-examples[#:eval math-eval