fix rotting indentation, switch to #lang

svn: r8987
This commit is contained in:
Eli Barzilay 2008-03-16 15:17:50 +00:00
parent 696f8a24ba
commit 38ba4f29e8
12 changed files with 1292 additions and 1409 deletions

View File

@ -2,7 +2,7 @@
;;; <alist.ss> ---- Association list functions
;;; Time-stamp: <02/03/01 13:56:33 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -32,45 +32,41 @@
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;; -Olin
(module alist
mzscheme
#lang mzscheme
(require mzlib/etc
srfi/optional
(only "search.ss" find)
"filter.ss"
(rename "fold.ss" s:map map))
(require mzlib/etc
srfi/optional
(only "search.ss" find)
"filter.ss"
(rename "fold.ss" s:map map))
(provide (rename my-assoc assoc)
alist-cons
alist-copy
alist-delete
#;alist-delete!)
(provide (rename my-assoc assoc)
alist-cons
alist-copy
alist-delete
#;alist-delete!)
;; Extended from R4RS to take an optional comparison argument.
(define my-assoc
(opt-lambda (x lis (maybe-= equal?))
(let ((= maybe-=))
(find (lambda (entry) (= x (car entry))) lis))))
;; Extended from R4RS to take an optional comparison argument.
(define my-assoc
(opt-lambda (x lis (maybe-= equal?))
(let ((= maybe-=))
(find (lambda (entry) (= x (car entry))) lis))))
(define (alist-cons key datum alist) (cons (cons key datum) alist))
(define (alist-cons key datum alist) (cons (cons key datum) alist))
(define (alist-copy alist)
(s:map (lambda (elt) (cons (car elt) (cdr elt)))
alist))
(define (alist-copy alist)
(s:map (lambda (elt) (cons (car elt) (cdr elt)))
alist))
(define alist-delete
(opt-lambda (key alist (maybe-= equal?))
(let ((= maybe-=))
(filter (lambda (elt) (not (= key (car elt)))) alist))))
(define alist-delete
(opt-lambda (key alist (maybe-= equal?))
(let ((= maybe-=))
(filter (lambda (elt) (not (= key (car elt)))) alist))))
#;
(define alist-delete!
(opt-lambda (key alist (maybe-= equal?))
(let ((= maybe-=))
(filter! (lambda (elt) (not (= key (car elt)))) alist))))
)
#;
(define alist-delete!
(opt-lambda (key alist (maybe-= equal?))
(let ((= maybe-=))
(filter! (lambda (elt) (not (= key (car elt)))) alist))))
;;; alist.ss ends here

View File

@ -2,7 +2,7 @@
;;; <cons.ss> ---- List constructors
;;; Time-stamp: <02/02/27 12:19:59 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -32,92 +32,79 @@
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;; -Olin
(module cons
mzscheme
#lang mzscheme
(require mzlib/etc
srfi/optional
"selector.ss")
(require mzlib/etc
srfi/optional
"selector.ss")
(provide xcons
make-list
list-tabulate
cons*
list-copy
circular-list
iota)
(provide xcons
make-list
list-tabulate
cons*
list-copy
circular-list
iota)
;; Occasionally useful as a value to be passed to a fold or other
;; higher-order procedure.
(define (xcons d a) (cons a d))
;; Occasionally useful as a value to be passed to a fold or other
;; higher-order procedure.
(define (xcons d a) (cons a d))
;; Make a list of length LEN.
;; Make a list of length LEN.
(define make-list
(opt-lambda (len [elt #f])
(check-arg (lambda (n) (and (integer? n) (>= n 0))) len 'make-list)
(do ((i len (- i 1))
(ans '() (cons elt ans)))
((<= i 0) ans))))
(define make-list
(opt-lambda (len [elt #f])
(check-arg (lambda (n) (and (integer? n) (>= n 0))) len 'make-list)
(do ((i len (- i 1))
(ans '() (cons elt ans)))
((<= i 0) ans))))
;; Make a list of length LEN. Elt i is (PROC i) for 0 <= i < LEN.
(define (list-tabulate len proc)
(check-arg (lambda (n) (and (integer? n) (>= n 0))) len 'list-tabulate)
(check-arg procedure? proc 'list-tabulate)
(do ((i (- len 1) (- i 1))
(ans '() (cons (proc i) ans)))
((< i 0) ans)))
;; (cons* a1 a2 ... an) = (cons a1 (cons a2 (cons ... an)))
;; (cons* a1) = a1 (cons* a1 a2 ...) = (cons a1 (cons* a2 ...))
;;
;; (cons first (unfold not-pair? car cdr rest values))
;; Make a list of length LEN. Elt i is (PROC i) for 0 <= i < LEN.
(define (cons* first . rest)
(let recur ((x first) (rest rest))
(if (pair? rest)
(cons x (recur (car rest) (cdr rest)))
x)))
(define (list-tabulate len proc)
(check-arg (lambda (n) (and (integer? n) (>= n 0))) len 'list-tabulate)
(check-arg procedure? proc 'list-tabulate)
(do ((i (- len 1) (- i 1))
(ans '() (cons (proc i) ans)))
((< i 0) ans)))
(define (list-copy lis)
(let recur ((lis lis))
(if (pair? lis)
(cons (car lis) (recur (cdr lis)))
lis)))
(define (circular-list val1 . vals)
(let ([ph (make-placeholder #f)])
(placeholder-set! ph
(cons val1
(let loop ([vals vals])
(if (null? vals)
ph
(cons (car vals)
(loop (cdr vals)))))))
(make-reader-graph ph)))
;; (cons* a1 a2 ... an) = (cons a1 (cons a2 (cons ... an)))
;; (cons* a1) = a1; (cons* a1 a2 ...) = (cons a1 (cons* a2 ...))
;;
;; (cons first (unfold not-pair? car cdr rest values))
(define (cons* first . rest)
(let recur ((x first) (rest rest))
(if (pair? rest)
(cons x (recur (car rest) (cdr rest)))
x)))
;; IOTA count [start step] (start start+step ... start+(count-1)*step)
(define iota
(opt-lambda (count [start 0] [step 1])
(check-arg integer? count 'iota)
(check-arg number? start 'iota)
(check-arg number? step 'iota)
(unless (or (zero? count) (positive? count))
(error 'iota "count expected to be non-negative, got: ~a" count))
(let loop ([n 0])
(cond
[(= n count) '()]
[else (cons (+ start (* n step))
(loop (add1 n)))]))))
(define (list-copy lis)
(let recur ((lis lis))
(if (pair? lis)
(cons (car lis) (recur (cdr lis)))
lis)))
)
(define (circular-list val1 . vals)
(let ([ph (make-placeholder #f)])
(placeholder-set! ph
(cons val1 (let loop ([vals vals])
(if (null? vals)
ph
(cons (car vals) (loop (cdr vals)))))))
(make-reader-graph ph)))
;; IOTA count [start step] (start start+step ... start+(count-1)*step)
(define iota
(opt-lambda (count [start 0] [step 1])
(check-arg integer? count 'iota)
(check-arg number? start 'iota)
(check-arg number? step 'iota)
(unless (or (zero? count) (positive? count))
(error 'iota "count expected to be non-negative, got: ~a" count))
(let loop ([n 0])
(if (= n count) '()
(cons (+ start (* n step)) (loop (add1 n)))))))
;;; cons.ss ends here

View File

@ -2,7 +2,7 @@
;;; <delete.ss> ---- List deletion functions
;;; Time-stamp: <02/03/01 07:26:12 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -33,63 +33,59 @@
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;; -Olin
(module delete
mzscheme
#lang mzscheme
(require mzlib/etc
srfi/optional
"predicate.ss"
"filter.ss")
(require mzlib/etc
srfi/optional
"predicate.ss"
"filter.ss")
(provide delete
(rename delete delete!)
delete-duplicates
(rename delete-duplicates delete-duplicates!))
(provide delete
(rename delete delete!)
delete-duplicates
(rename delete-duplicates delete-duplicates!))
(define delete
(opt-lambda (x lis (maybe-= equal?))
(let ((= maybe-=))
(filter (lambda (y) (not (= x y))) lis))))
(define delete
(opt-lambda (x lis (maybe-= equal?))
(let ((= maybe-=))
(filter (lambda (y) (not (= x y))) lis))))
#;
(define delete!
(opt-lambda (x lis (maybe-= equal?))
(let ((= maybe-=))
(filter! (lambda (y) (not (= x y))) lis))))
#;
(define delete!
(opt-lambda (x lis (maybe-= equal?))
(let ((= maybe-=))
(filter! (lambda (y) (not (= x y))) lis))))
;; right-duplicate deletion
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; delete-duplicates delete-duplicates!
;;
;; Beware -- these are N^2 algorithms. To efficiently remove duplicates
;; in long lists, sort the list to bring duplicates together, then use a
;; linear-time algorithm to kill the dups. Or use an algorithm based on
;; element-marking. The former gives you O(n lg n), the latter is linear.
;; right-duplicate deletion
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; delete-duplicates delete-duplicates!
;;
;; Beware -- these are N^2 algorithms. To efficiently remove duplicates
;; in long lists, sort the list to bring duplicates together, then use a
;; linear-time algorithm to kill the dups. Or use an algorithm based on
;; element-marking. The former gives you O(n lg n), the latter is linear.
(define delete-duplicates
(opt-lambda (lis (maybe-= equal?))
(let ((elt= maybe-=))
(check-arg procedure? elt= 'delete-duplicates)
(let recur ((lis lis))
(if (null-list? lis) lis
(let* ((x (car lis))
(tail (cdr lis))
(new-tail (recur (delete x tail elt=))))
(if (eq? tail new-tail) lis (cons x new-tail))))))))
#;
(define delete-duplicates!
(opt-lambda (lis (maybe-= equal?))
(let ((elt= maybe-=))
(check-arg procedure? elt= 'delete-duplicates!)
(let recur ((lis lis))
(if (null-list? lis) lis
(let* ((x (car lis))
(tail (cdr lis))
(new-tail (recur (delete! x tail elt=))))
(if (eq? tail new-tail) lis (cons x new-tail))))))))
)
(define delete-duplicates
(opt-lambda (lis (maybe-= equal?))
(let ((elt= maybe-=))
(check-arg procedure? elt= 'delete-duplicates)
(let recur ((lis lis))
(if (null-list? lis) lis
(let* ((x (car lis))
(tail (cdr lis))
(new-tail (recur (delete x tail elt=))))
(if (eq? tail new-tail) lis (cons x new-tail))))))))
#;
(define delete-duplicates!
(opt-lambda (lis (maybe-= equal?))
(let ((elt= maybe-=))
(check-arg procedure? elt= 'delete-duplicates!)
(let recur ((lis lis))
(if (null-list? lis) lis
(let* ((x (car lis))
(tail (cdr lis))
(new-tail (recur (delete! x tail elt=))))
(if (eq? tail new-tail) lis (cons x new-tail))))))))
;;; delete.ss ends here

View File

@ -2,7 +2,7 @@
;;; <filter.ss> ---- List filtering and partitioning functions
;;; Time-stamp: <02/03/01 07:26:43 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -32,162 +32,145 @@
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;; -Olin
(module filter
mzscheme
#lang mzscheme
(require mzlib/etc
srfi/optional
"predicate.ss")
(require srfi/8/receive)
(require mzlib/etc
srfi/optional
"predicate.ss"
srfi/8/receive)
(provide filter
partition
remove
(rename filter filter!)
(rename partition partition!)
(rename remove remove!))
(provide filter
partition
remove
(rename filter filter!)
(rename partition partition!)
(rename remove remove!))
;; filter, remove, partition
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; FILTER, REMOVE, PARTITION and their destructive counterparts do not
;; disorder the elements of their argument.
;; filter, remove, partition
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; FILTER, REMOVE, PARTITION and their destructive counterparts do not
;; disorder the elements of their argument.
;; This FILTER shares the longest tail of L that has no deleted
;; elements. If Scheme had multi-continuation calls, they could be
;; made more efficient.
;; This FILTER shares the longest tail of L that has no deleted
;; elements. If Scheme had multi-continuation calls, they could be
;; made more efficient.
(define (filter pred lis) ; Sleazing with EQ? makes this
(check-arg procedure? pred 'filter) ; one faster.
(let recur ((lis lis))
(if (null-list? lis) lis ; Use NOT-PAIR? to handle dotted lists.
(let ((head (car lis))
(tail (cdr lis)))
(if (pred head)
(let ((new-tail (recur tail))) ; Replicate the RECUR call so
(if (eq? tail new-tail) lis
(cons head new-tail)))
(recur tail)))))) ; this one can be a tail call.
(define (filter pred lis) ; Sleazing with EQ? makes this
(check-arg procedure? pred 'filter) ; one faster.
(let recur ((lis lis))
(if (null-list? lis) lis ; Use NOT-PAIR? to handle dotted lists.
(let ((head (car lis))
(tail (cdr lis)))
(if (pred head)
(let ((new-tail (recur tail))) ; Replicate the RECUR call so
(if (eq? tail new-tail) lis
(cons head new-tail)))
(recur tail)))))) ; this one can be a tail call.
;; This implementation of FILTER!
;; - doesn't cons, and uses no stack;
;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
;; usually expensive on modern machines, and can be extremely expensive on
;; modern Schemes (e.g., ones that have generational GC's).
;; It just zips down contiguous runs of in and out elts in LIS doing the
;; minimal number of SET-CDR!s to splice the tail of one run of ins to the
;; beginning of the next.
#;
(define (filter! pred lis)
(check-arg procedure? pred 'filter!)
(let lp ((ans lis))
(cond ((null-list? ans) ans) ; Scan looking for
((not (pred (car ans))) (lp (cdr ans))) ; first cons of result.
;; ANS is the eventual answer.
;; SCAN-IN: (CDR PREV) = LIS and (CAR PREV) satisfies PRED.
;; Scan over a contiguous segment of the list that
;; satisfies PRED.
;; SCAN-OUT: (CAR PREV) satisfies PRED. Scan over a contiguous
;; segment of the list that *doesn't* satisfy PRED.
;; When the segment ends, patch in a link from PREV
;; to the start of the next good segment, and jump to
;; SCAN-IN.
(else
(letrec ((scan-in (lambda (prev lis)
(if (pair? lis)
(if (pred (car lis))
(scan-in lis (cdr lis))
(scan-out prev (cdr lis))))))
(scan-out (lambda (prev lis)
(let lp ((lis lis))
(if (pair? lis)
(if (pred (car lis))
(begin (set-cdr! prev lis)
(scan-in lis (cdr lis)))
(lp (cdr lis)))
(set-cdr! prev lis))))))
(scan-in ans (cdr ans))
ans)))))
;; Answers share common tail with LIS where possible;
;; the technique is slightly subtle.
(define (partition pred lis)
(check-arg procedure? pred 'partition)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle dotted lists.
(let ((elt (car lis))
(tail (cdr lis)))
(receive (in out) (recur tail)
(if (pred elt)
(values (if (pair? out) (cons elt in) lis) out)
(values in (if (pair? in) (cons elt out) lis))))))))
;; This implementation of PARTITION!
;; - doesn't cons, and uses no stack;
;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
;; usually expensive on modern machines, and can be extremely expensive on
;; modern Schemes (e.g., ones that have generational GC's).
;; It just zips down contiguous runs of in and out elts in LIS doing the
;; minimal number of SET-CDR!s to splice these runs together into the result
;; lists.
#;
(define (partition! pred lis)
(check-arg procedure? pred 'partition!)
(if (null-list? lis) (values lis lis)
;; This pair of loops zips down contiguous in & out runs of the
;; list, splicing the runs together. The invariants are
;; SCAN-IN: (cdr in-prev) = LIS.
;; SCAN-OUT: (cdr out-prev) = LIS.
(letrec ((scan-in (lambda (in-prev out-prev lis)
(let lp ((in-prev in-prev) (lis lis))
(if (pair? lis)
(if (pred (car lis))
(lp lis (cdr lis))
(begin (set-cdr! out-prev lis)
(scan-out in-prev lis (cdr lis))))
(set-cdr! out-prev lis))))) ; Done.
(scan-out (lambda (in-prev out-prev lis)
(let lp ((out-prev out-prev) (lis lis))
(if (pair? lis)
(if (pred (car lis))
(begin (set-cdr! in-prev lis)
(scan-in lis out-prev (cdr lis)))
(lp lis (cdr lis)))
(set-cdr! in-prev lis)))))) ; Done.
;; Crank up the scan&splice loops.
(if (pred (car lis))
;; LIS begins in-list. Search for out-list's first pair.
(let lp ((prev-l lis) (l (cdr lis)))
(cond ((not (pair? l)) (values lis l))
((pred (car l)) (lp l (cdr l)))
(else (scan-out prev-l l (cdr l))
(values lis l)))) ; Done.
;; LIS begins out-list. Search for in-list's first pair.
(let lp ((prev-l lis) (l (cdr lis)))
(cond ((not (pair? l)) (values l lis))
((pred (car l))
(scan-in l prev-l (cdr l))
(values l lis)) ; Done.
(else (lp l (cdr l)))))))))
;; Inline us, please.
(define (remove pred l) (filter (lambda (x) (not (pred x))) l))
#;
(define (remove! pred l) (filter! (lambda (x) (not (pred x))) l))
;; This implementation of FILTER!
;; - doesn't cons, and uses no stack;
;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
;; usually expensive on modern machines, and can be extremely expensive on
;; modern Schemes (e.g., ones that have generational GC's).
;; It just zips down contiguous runs of in and out elts in LIS doing the
;; minimal number of SET-CDR!s to splice the tail of one run of ins to the
;; beginning of the next.
#;
(define (filter! pred lis)
(check-arg procedure? pred 'filter!)
(let lp ((ans lis))
(cond ((null-list? ans) ans) ; Scan looking for
((not (pred (car ans))) (lp (cdr ans))) ; first cons of result.
;; ANS is the eventual answer.
;; SCAN-IN: (CDR PREV) = LIS and (CAR PREV) satisfies PRED.
;; Scan over a contiguous segment of the list that
;; satisfies PRED.
;; SCAN-OUT: (CAR PREV) satisfies PRED. Scan over a contiguous
;; segment of the list that *doesn't* satisfy PRED.
;; When the segment ends, patch in a link from PREV
;; to the start of the next good segment, and jump to
;; SCAN-IN.
(else
(letrec ((scan-in (lambda (prev lis)
(if (pair? lis)
(if (pred (car lis))
(scan-in lis (cdr lis))
(scan-out prev (cdr lis))))))
(scan-out (lambda (prev lis)
(let lp ((lis lis))
(if (pair? lis)
(if (pred (car lis))
(begin (set-cdr! prev lis)
(scan-in lis (cdr lis)))
(lp (cdr lis)))
(set-cdr! prev lis))))))
(scan-in ans (cdr ans))
ans)))))
;; Answers share common tail with LIS where possible;
;; the technique is slightly subtle.
(define (partition pred lis)
(check-arg procedure? pred 'partition)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle dotted lists.
(let ((elt (car lis))
(tail (cdr lis)))
(receive (in out) (recur tail)
(if (pred elt)
(values (if (pair? out) (cons elt in) lis) out)
(values in (if (pair? in) (cons elt out) lis))))))))
;; This implementation of PARTITION!
;; - doesn't cons, and uses no stack;
;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
;; usually expensive on modern machines, and can be extremely expensive on
;; modern Schemes (e.g., ones that have generational GC's).
;; It just zips down contiguous runs of in and out elts in LIS doing the
;; minimal number of SET-CDR!s to splice these runs together into the result
;; lists.
#;
(define (partition! pred lis)
(check-arg procedure? pred 'partition!)
(if (null-list? lis) (values lis lis)
;; This pair of loops zips down contiguous in & out runs of the
;; list, splicing the runs together. The invariants are
;; SCAN-IN: (cdr in-prev) = LIS.
;; SCAN-OUT: (cdr out-prev) = LIS.
(letrec ((scan-in (lambda (in-prev out-prev lis)
(let lp ((in-prev in-prev) (lis lis))
(if (pair? lis)
(if (pred (car lis))
(lp lis (cdr lis))
(begin (set-cdr! out-prev lis)
(scan-out in-prev lis (cdr lis))))
(set-cdr! out-prev lis))))) ; Done.
(scan-out (lambda (in-prev out-prev lis)
(let lp ((out-prev out-prev) (lis lis))
(if (pair? lis)
(if (pred (car lis))
(begin (set-cdr! in-prev lis)
(scan-in lis out-prev (cdr lis)))
(lp lis (cdr lis)))
(set-cdr! in-prev lis)))))) ; Done.
;; Crank up the scan&splice loops.
(if (pred (car lis))
;; LIS begins in-list. Search for out-list's first pair.
(let lp ((prev-l lis) (l (cdr lis)))
(cond ((not (pair? l)) (values lis l))
((pred (car l)) (lp l (cdr l)))
(else (scan-out prev-l l (cdr l))
(values lis l)))) ; Done.
;; LIS begins out-list. Search for in-list's first pair.
(let lp ((prev-l lis) (l (cdr lis)))
(cond ((not (pair? l)) (values l lis))
((pred (car l))
(scan-in l prev-l (cdr l))
(values l lis)) ; Done.
(else (lp l (cdr l)))))))))
;; Inline us, please.
(define (remove pred l) (filter (lambda (x) (not (pred x))) l))
#;
(define (remove! pred l) (filter! (lambda (x) (not (pred x))) l))
)
;;; filter.ss ends here

View File

@ -2,7 +2,7 @@
;;; <fold.ss> ---- List folds
;;; Time-stamp: <02/02/28 12:02:38 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -32,260 +32,234 @@
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;; -Olin
(module fold
mzscheme
#lang mzscheme
(require srfi/optional
"predicate.ss"
"selector.ss"
"util.ss")
(require srfi/8/receive)
(require srfi/optional
"predicate.ss"
"selector.ss"
"util.ss"
srfi/8/receive)
(provide (rename my-map map)
(rename my-for-each for-each)
fold
unfold
pair-fold
reduce
fold-right
unfold-right
pair-fold-right
reduce-right
append-map
(rename append-map append-map!)
(rename my-map map!)
pair-for-each
filter-map
map-in-order)
(provide (rename my-map map)
(rename my-for-each for-each)
fold
unfold
pair-fold
reduce
fold-right
unfold-right
pair-fold-right
reduce-right
append-map
(rename append-map append-map!)
(rename my-map map!)
pair-for-each
filter-map
map-in-order)
;; fold/unfold
;;;;;;;;;;;;;;
(define (unfold-right p f g seed . maybe-tail)
(check-arg procedure? p 'unfold-right)
(check-arg procedure? f 'unfold-right)
(check-arg procedure? g 'unfold-right)
(let lp ((seed seed) (ans maybe-tail))
(if (p seed) ans
(lp (g seed)
(cons (f seed) ans)))))
(define (unfold p f g seed . maybe-tail-gen)
(check-arg procedure? p 'unfold)
(check-arg procedure? f 'unfold)
(check-arg procedure? g 'unfold)
(if (pair? maybe-tail-gen)
(let ((tail-gen (car maybe-tail-gen)))
(if (pair? (cdr maybe-tail-gen))
(apply error "Too many arguments" unfold p f g seed maybe-tail-gen)
(let recur ((seed seed))
(if (p seed) (tail-gen seed)
(cons (f seed) (recur (g seed)))))))
(let recur ((seed seed))
(if (p seed) '()
(cons (f seed) (recur (g seed)))))))
(define (fold kons knil lis1 . lists)
(check-arg procedure? kons 'fold)
(if (pair? lists)
(let lp ((lists (cons lis1 lists)) (ans knil)) ; N-ary case
(receive (cars+ans cdrs) (%cars+cdrs+ lists ans)
(if (null? cars+ans) ans ; Done.
(lp cdrs (apply kons cars+ans)))))
(let lp ((lis lis1) (ans knil)) ; Fast path
(if (null-list? lis) ans
(lp (cdr lis) (kons (car lis) ans))))))
(define (fold-right kons knil lis1 . lists)
(check-arg procedure? kons 'fold-right)
(if (pair? lists)
(let recur ((lists (cons lis1 lists))) ; N-ary case
(let ((cdrs (%cdrs lists)))
(if (null? cdrs) knil
(apply kons (%cars+ lists (recur cdrs))))))
(let recur ((lis lis1)) ; Fast path
(if (null-list? lis) knil
(let ((head (car lis)))
(kons head (recur (cdr lis))))))))
(define (pair-fold-right f zero lis1 . lists)
(check-arg procedure? f 'pair-fold-right)
(if (pair? lists)
(let recur ((lists (cons lis1 lists))) ; N-ary case
(let ((cdrs (%cdrs lists)))
(if (null? cdrs) zero
(apply f (append lists (list (recur cdrs)))))))
(let recur ((lis lis1)) ; Fast path
(if (null-list? lis) zero (f lis (recur (cdr lis)))))))
(define (pair-fold f zero lis1 . lists)
(check-arg procedure? f 'pair-fold)
(if (pair? lists)
(let lp ((lists (cons lis1 lists)) (ans zero)) ; N-ary case
(let ((tails (%cdrs lists)))
(if (null? tails) ans
(lp tails (apply f (append lists (list ans)))))))
(let lp ((lis lis1) (ans zero))
(if (null-list? lis) ans
(let ((tail (cdr lis))) ; Grab the cdr now,
(lp tail (f lis ans))))))) ; in case F SET-CDR!s LIS.
;; REDUCE and REDUCE-RIGHT only use RIDENTITY in the empty-list case.
;; These cannot meaningfully be n-ary.
(define (reduce f ridentity lis)
(check-arg procedure? f 'reduce)
(if (null-list? lis) ridentity
(fold f (car lis) (cdr lis))))
(define (reduce-right f ridentity lis)
(check-arg procedure? f 'reduce-right)
(if (null-list? lis) ridentity
(let recur ((head (car lis)) (lis (cdr lis)))
(if (pair? lis)
(f head (recur (car lis) (cdr lis)))
head))))
;; Mappers: append-map append-map! pair-for-each map! filter-map map-in-order
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (append-map f lis1 . lists)
(really-append-map append-map append f lis1 lists))
#;
(define (append-map! f lis1 . lists)
(really-append-map append-map! append! f lis1 lists))
(define (really-append-map who appender f lis1 lists)
(check-arg procedure? f 'who)
(if (pair? lists)
(receive (cars cdrs) (%cars+cdrs (cons lis1 lists))
(if (null? cars) '()
(let recur ((cars cars) (cdrs cdrs))
(let ((vals (apply f cars)))
(receive (cars2 cdrs2) (%cars+cdrs cdrs)
(if (null? cars2) vals
(appender vals (recur cars2 cdrs2))))))))
;; Fast path
(if (null-list? lis1) '()
(let recur ((elt (car lis1)) (rest (cdr lis1)))
(let ((vals (f elt)))
(if (null-list? rest) vals
(appender vals (recur (car rest) (cdr rest)))))))))
(define (pair-for-each proc lis1 . lists)
(check-arg procedure? proc 'pair-for-each)
(if (pair? lists)
(let lp ((lists (cons lis1 lists)))
(let ((tails (%cdrs lists)))
(if (pair? tails)
(begin (apply proc lists)
(lp tails)))))
;; Fast path.
(let lp ((lis lis1))
(if (not (null-list? lis))
(let ((tail (cdr lis))) ; Grab the cdr now,
(proc lis) ; in case PROC SET-CDR!s LIS.
(lp tail))))))
;; We stop when LIS1 runs out, not when any list runs out.
#;
(define (map! f lis1 . lists)
(check-arg procedure? f 'map!)
(if (pair? lists)
(let lp ((lis1 lis1) (lists lists))
(if (not (null-list? lis1))
(receive (heads tails) (%cars+cdrs/no-test lists)
(set-car! lis1 (apply f (car lis1) heads))
(lp (cdr lis1) tails))))
;; Fast path.
(pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) lis1))
lis1)
;; Map F across L, and save up all the non-false results.
(define (filter-map f lis1 . lists)
(check-arg procedure? f 'filter-map)
(if (pair? lists)
(let recur ((lists (cons lis1 lists)))
(receive (cars cdrs) (%cars+cdrs lists)
(if (pair? cars)
(cond ((apply f cars) => (lambda (x) (cons x (recur cdrs))))
(else (recur cdrs))) ; Tail call in this arm.
'())))
;; Fast path.
(let recur ((lis lis1))
(if (null-list? lis) lis
(let ((tail (recur (cdr lis))))
(cond ((f (car lis)) => (lambda (x) (cons x tail)))
(else tail)))))))
;; Map F across lists, guaranteeing to go left-to-right.
;; NOTE: Some implementations of R5RS MAP are compliant with this spec;
;; in which case this procedure may simply be defined as a synonym for MAP.
(define (map-in-order f lis1 . lists)
(check-arg procedure? f 'map-in-order)
(if (pair? lists)
(let recur ((lists (cons lis1 lists)))
(receive (cars cdrs) (%cars+cdrs lists)
(if (pair? cars)
(let ((x (apply f cars))) ; Do head first,
(cons x (recur cdrs))) ; then tail.
'())))
;; Fast path.
(let recur ((lis lis1))
(if (null-list? lis) lis
(let ((tail (cdr lis))
(x (f (car lis)))) ; Do head first,
(cons x (recur tail))))))) ; then tail.
;; We extend MAP to handle arguments of unequal length.
(define my-map map-in-order)
;; fold/unfold
;;;;;;;;;;;;;;
(define (unfold-right p f g seed . maybe-tail)
(check-arg procedure? p 'unfold-right)
(check-arg procedure? f 'unfold-right)
(check-arg procedure? g 'unfold-right)
(let lp ((seed seed) (ans maybe-tail))
(if (p seed) ans
(lp (g seed)
(cons (f seed) ans)))))
(define (unfold p f g seed . maybe-tail-gen)
(check-arg procedure? p 'unfold)
(check-arg procedure? f 'unfold)
(check-arg procedure? g 'unfold)
(if (pair? maybe-tail-gen)
(let ((tail-gen (car maybe-tail-gen)))
(if (pair? (cdr maybe-tail-gen))
(apply error "Too many arguments" unfold p f g seed maybe-tail-gen)
(let recur ((seed seed))
(if (p seed) (tail-gen seed)
(cons (f seed) (recur (g seed)))))))
(let recur ((seed seed))
(if (p seed) '()
(cons (f seed) (recur (g seed)))))))
(define (fold kons knil lis1 . lists)
(check-arg procedure? kons 'fold)
(if (pair? lists)
(let lp ((lists (cons lis1 lists)) (ans knil)) ; N-ary case
(receive (cars+ans cdrs) (%cars+cdrs+ lists ans)
(if (null? cars+ans) ans ; Done.
(lp cdrs (apply kons cars+ans)))))
(let lp ((lis lis1) (ans knil)) ; Fast path
(if (null-list? lis) ans
(lp (cdr lis) (kons (car lis) ans))))))
(define (fold-right kons knil lis1 . lists)
(check-arg procedure? kons 'fold-right)
(if (pair? lists)
(let recur ((lists (cons lis1 lists))) ; N-ary case
(let ((cdrs (%cdrs lists)))
(if (null? cdrs) knil
(apply kons (%cars+ lists (recur cdrs))))))
(let recur ((lis lis1)) ; Fast path
(if (null-list? lis) knil
(let ((head (car lis)))
(kons head (recur (cdr lis))))))))
(define (pair-fold-right f zero lis1 . lists)
(check-arg procedure? f 'pair-fold-right)
(if (pair? lists)
(let recur ((lists (cons lis1 lists))) ; N-ary case
(let ((cdrs (%cdrs lists)))
(if (null? cdrs) zero
(apply f (append lists (list (recur cdrs)))))))
(let recur ((lis lis1)) ; Fast path
(if (null-list? lis) zero (f lis (recur (cdr lis)))))))
(define (pair-fold f zero lis1 . lists)
(check-arg procedure? f 'pair-fold)
(if (pair? lists)
(let lp ((lists (cons lis1 lists)) (ans zero)) ; N-ary case
(let ((tails (%cdrs lists)))
(if (null? tails) ans
(lp tails (apply f (append lists (list ans)))))))
(let lp ((lis lis1) (ans zero))
(if (null-list? lis) ans
(let ((tail (cdr lis))) ; Grab the cdr now,
(lp tail (f lis ans))))))) ; in case F SET-CDR!s LIS.
;; REDUCE and REDUCE-RIGHT only use RIDENTITY in the empty-list case.
;; These cannot meaningfully be n-ary.
(define (reduce f ridentity lis)
(check-arg procedure? f 'reduce)
(if (null-list? lis) ridentity
(fold f (car lis) (cdr lis))))
(define (reduce-right f ridentity lis)
(check-arg procedure? f 'reduce-right)
(if (null-list? lis) ridentity
(let recur ((head (car lis)) (lis (cdr lis)))
(if (pair? lis)
(f head (recur (car lis) (cdr lis)))
head))))
;; Mappers: append-map append-map! pair-for-each map! filter-map map-in-order
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (append-map f lis1 . lists)
(really-append-map append-map append f lis1 lists))
#;
(define (append-map! f lis1 . lists)
(really-append-map append-map! append! f lis1 lists))
(define (really-append-map who appender f lis1 lists)
(check-arg procedure? f 'who)
(if (pair? lists)
(receive (cars cdrs) (%cars+cdrs (cons lis1 lists))
(if (null? cars) '()
(let recur ((cars cars) (cdrs cdrs))
(let ((vals (apply f cars)))
(receive (cars2 cdrs2) (%cars+cdrs cdrs)
(if (null? cars2) vals
(appender vals (recur cars2 cdrs2))))))))
;; Fast path
(if (null-list? lis1) '()
(let recur ((elt (car lis1)) (rest (cdr lis1)))
(let ((vals (f elt)))
(if (null-list? rest) vals
(appender vals (recur (car rest) (cdr rest)))))))))
(define (pair-for-each proc lis1 . lists)
(check-arg procedure? proc 'pair-for-each)
(if (pair? lists)
(let lp ((lists (cons lis1 lists)))
(let ((tails (%cdrs lists)))
(if (pair? tails)
(begin (apply proc lists)
(lp tails)))))
;; Fast path.
(let lp ((lis lis1))
(if (not (null-list? lis))
(let ((tail (cdr lis))) ; Grab the cdr now,
(proc lis) ; in case PROC SET-CDR!s LIS.
(lp tail))))))
;; We stop when LIS1 runs out, not when any list runs out.
#;
(define (map! f lis1 . lists)
(check-arg procedure? f 'map!)
(if (pair? lists)
(let lp ((lis1 lis1) (lists lists))
(if (not (null-list? lis1))
(receive (heads tails) (%cars+cdrs/no-test lists)
(set-car! lis1 (apply f (car lis1) heads))
(lp (cdr lis1) tails))))
;; Fast path.
(pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) lis1))
lis1)
;; Map F across L, and save up all the non-false results.
(define (filter-map f lis1 . lists)
(check-arg procedure? f 'filter-map)
(if (pair? lists)
(let recur ((lists (cons lis1 lists)))
(receive (cars cdrs) (%cars+cdrs lists)
(if (pair? cars)
(cond ((apply f cars) => (lambda (x) (cons x (recur cdrs))))
(else (recur cdrs))) ; Tail call in this arm.
'())))
;; Fast path.
(let recur ((lis lis1))
(if (null-list? lis) lis
(let ((tail (recur (cdr lis))))
(cond ((f (car lis)) => (lambda (x) (cons x tail)))
(else tail)))))))
;; Map F across lists, guaranteeing to go left-to-right.
;; NOTE: Some implementations of R5RS MAP are compliant with this spec;
;; in which case this procedure may simply be defined as a synonym for MAP.
(define (map-in-order f lis1 . lists)
(check-arg procedure? f 'map-in-order)
(if (pair? lists)
(let recur ((lists (cons lis1 lists)))
(receive (cars cdrs) (%cars+cdrs lists)
(if (pair? cars)
(let ((x (apply f cars))) ; Do head first,
(cons x (recur cdrs))) ; then tail.
'())))
;; Fast path.
(let recur ((lis lis1))
(if (null-list? lis) lis
(let ((tail (cdr lis))
(x (f (car lis)))) ; Do head first,
(cons x (recur tail))))))) ; then tail.
;; We extend MAP to handle arguments of unequal length.
(define my-map map-in-order)
;;; Apply F across lists, guaranteeing to go left-to-right.
;;; NOTE: Some implementations of R5RS MAP are compliant with this spec;
;;; in which case this procedure may simply be defined as a synonym for FOR-EACH.
(define (my-for-each f lis1 . lists)
(check-arg procedure? f for-each)
(if (pair? lists)
(let recur ((lists (cons lis1 lists)))
(receive (cars cdrs) (%cars+cdrs lists)
(if (pair? cars)
(begin
(apply f cars) ; Do head first,
(recur cdrs))))) ; then tail.
;; Fast path.
(let recur ((lis lis1))
(if (not (null-list? lis))
(begin
(f (car lis)) ; Do head first,
(recur (cdr lis)))))))
)
(define (my-for-each f lis1 . lists)
(check-arg procedure? f for-each)
(if (pair? lists)
(let recur ((lists (cons lis1 lists)))
(receive (cars cdrs) (%cars+cdrs lists)
(if (pair? cars)
(begin
(apply f cars) ; Do head first,
(recur cdrs))))) ; then tail.
;; Fast path.
(let recur ((lis lis1))
(if (not (null-list? lis))
(begin
(f (car lis)) ; Do head first,
(recur (cdr lis)))))))
;;; fold.ss ends here

View File

@ -1,4 +1,4 @@
;;; SRFI-1 list-processing library -*- Scheme -*-
;;; SRFI-1 list-processing library -*- Scheme -*-
;;; Reference implementation
;;;
;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
@ -17,25 +17,25 @@
;;; for SRFI-1. See the porting notes below for more information.
;;; Exported:
;;; xcons tree-copy make-list list-tabulate cons* list-copy
;;; xcons tree-copy make-list list-tabulate cons* list-copy
;;; proper-list? circular-list? dotted-list? not-pair? null-list? list=
;;; circular-list length+
;;; iota
;;; first second third fourth fifth sixth seventh eighth ninth tenth
;;; car+cdr
;;; take drop
;;; take-right drop-right
;;; take drop
;;; take-right drop-right
;;; take! drop-right!
;;; split-at split-at!
;;; last last-pair
;;; zip unzip1 unzip2 unzip3 unzip4 unzip5
;;; count
;;; append! append-reverse append-reverse! concatenate concatenate!
;;; append! append-reverse append-reverse! concatenate concatenate!
;;; unfold fold pair-fold reduce
;;; unfold-right fold-right pair-fold-right reduce-right
;;; append-map append-map! map! pair-for-each filter-map map-in-order
;;; filter partition remove
;;; filter! partition! remove!
;;; filter! partition! remove!
;;; find find-tail any every list-index
;;; take-while drop-while take-while!
;;; span break span! break!
@ -43,11 +43,11 @@
;;; alist-cons alist-copy
;;; delete-duplicates delete-duplicates!
;;; alist-delete alist-delete!
;;; reverse!
;;; lset<= lset= lset-adjoin
;;; reverse!
;;; lset<= lset= lset-adjoin
;;; lset-union lset-intersection lset-difference lset-xor lset-diff+intersection
;;; lset-union! lset-intersection! lset-difference! lset-xor! lset-diff+intersection!
;;;
;;;
;;; In principle, the following R4RS list- and pair-processing procedures
;;; are also part of this package's exports, although they are not defined
;;; in this file:
@ -60,7 +60,7 @@
;;; in this file:
;;; map for-each member assoc
;;;
;;; The remaining two R4RS list-processing procedures are not included:
;;; The remaining two R4RS list-processing procedures are not included:
;;; list-tail (use drop)
;;; list? (use proper-list?)
@ -70,7 +70,7 @@
;;; of the answer list in the wrong order (left-to-right or head-to-tail) from
;;; the order needed to cons them into the proper answer (right-to-left, or
;;; tail-then-head). One style or idiom of programming these algorithms, then,
;;; loops, consing up the elements in reverse order, then destructively
;;; loops, consing up the elements in reverse order, then destructively
;;; reverses the list at the end of the loop. I do not do this. The natural
;;; and efficient way to code these algorithms is recursively. This trades off
;;; intermediate temporary list structure for intermediate temporary stack
@ -83,16 +83,16 @@
;;; This is carefully tuned code; do not modify casually.
;;; - It is careful to share storage when possible;
;;; - Side-effecting code tries not to perform redundant writes.
;;;
;;;
;;; That said, a port of this library to a specific Scheme system might wish
;;; to tune this code to exploit particulars of the implementation.
;;; to tune this code to exploit particulars of the implementation.
;;; The single most important compiler-specific optimisation you could make
;;; to this library would be to add rewrite rules or transforms to:
;;; - transform applications of n-ary procedures (e.g. LIST=, CONS*, APPEND,
;;; LSET-UNION) into multiple applications of a primitive two-argument
;;; LSET-UNION) into multiple applications of a primitive two-argument
;;; variant.
;;; - transform applications of the mapping functions (MAP, FOR-EACH, FOLD,
;;; ANY, EVERY) into open-coded loops. The killer here is that these
;;; - transform applications of the mapping functions (MAP, FOR-EACH, FOLD,
;;; ANY, EVERY) into open-coded loops. The killer here is that these
;;; functions are n-ary. Handling the general case is quite inefficient,
;;; requiring many intermediate data structures to be allocated and
;;; discarded.
@ -114,13 +114,13 @@
;;;
;;; Note that this code is, of course, dependent upon standard bindings for
;;; the R5RS procedures -- i.e., it assumes that the variable CAR is bound
;;; to the procedure that takes the car of a list. If your Scheme
;;; to the procedure that takes the car of a list. If your Scheme
;;; implementation allows user code to alter the bindings of these procedures
;;; in a manner that would be visible to these definitions, then there might
;;; be trouble. You could consider horrible kludgery along the lines of
;;; (define fact
;;; (define fact
;;; (let ((= =) (- -) (* *))
;;; (letrec ((real-fact (lambda (n)
;;; (letrec ((real-fact (lambda (n)
;;; (if (= n 0) 1 (* n (real-fact (- n 1)))))))
;;; real-fact)))
;;; Or you could consider shifting to a reasonable Scheme system that, say,
@ -130,18 +130,18 @@
;;; Scheme system has a sophisticated compiler that can eliminate redundant
;;; error checks, this is no problem. However, if not, these checks incur
;;; some performance overhead -- and, in a safe Scheme implementation, they
;;; are in some sense redundant: if we don't check to see that the PROC
;;; are in some sense redundant: if we don't check to see that the PROC
;;; parameter is a procedure, we'll find out anyway three lines later when
;;; we try to call the value. It's pretty easy to rip all this argument
;;; we try to call the value. It's pretty easy to rip all this argument
;;; checking code out if it's inappropriate for your implementation -- just
;;; nuke every call to CHECK-ARG.
;;;
;;; On the other hand, if you *do* have a sophisticated compiler that will
;;; actually perform soft-typing and eliminate redundant checks (Rice's systems
;;; being the only possible candidate of which I'm aware), leaving these checks
;;; being the only possible candidate of which I'm aware), leaving these checks
;;; in can *help*, since their presence can be elided in redundant cases,
;;; and in cases where they are needed, performing the checks early, at
;;; procedure entry, can "lift" a check out of a loop.
;;; procedure entry, can "lift" a check out of a loop.
;;;
;;; Finally, I have only checked the properties that can portably be checked
;;; with R5RS Scheme -- and this is not complete. You may wish to alter
@ -197,7 +197,7 @@
;;; the definition and implementation of this library.
;;;
;;; The argument *against* defining these procedures to work on dotted
;;; lists is that dotted lists are the rare, odd case, and that by
;;; lists is that dotted lists are the rare, odd case, and that by
;;; arranging for the procedures to handle them, we lose error checking
;;; in the cases where a dotted list is passed by accident -- e.g., when
;;; the programmer swaps a two arguments to a list-processing function,
@ -209,42 +209,35 @@
;;; The SRFI discussion record contains more discussion on this topic.
;; JBC, 2003-10-20: some of the names provided by list.ss are prefixed
;; with an s: to avoid colliding with mzscheme. The wrapper 1.ss
;; changes their names back to the non-prefixed form.
;; with an s: to avoid colliding with mzscheme. The wrapper 1.ss
;; changes their names back to the non-prefixed form.
(module list mzscheme
#lang mzscheme
(require srfi/optional)
(require srfi/optional)
(require "cons.ss"
"selector.ss"
"predicate.ss"
"misc.ss"
(all-except "fold.ss" map for-each)
(rename "fold.ss" s:map map)
(rename "fold.ss" s:for-each for-each)
(all-except "search.ss" member)
(rename "search.ss" s:member member)
"filter.ss"
"delete.ss"
(all-except "alist.ss" assoc)
(rename "alist.ss" s:assoc assoc)
"lset.ss")
(require "cons.ss"
"selector.ss"
"predicate.ss"
"misc.ss"
(all-except "fold.ss" map for-each)
(rename "fold.ss" s:map map)
(rename "fold.ss" s:for-each for-each)
(all-except "search.ss" member)
(rename "search.ss" s:member member)
"filter.ss"
"delete.ss"
(all-except "alist.ss" assoc)
(rename "alist.ss" s:assoc assoc)
"lset.ss")
(provide
(all-from "cons.ss")
(all-from "selector.ss")
(all-from "predicate.ss")
(all-from "misc.ss")
(all-from "fold.ss")
(all-from "search.ss")
(all-from "filter.ss")
(all-from "delete.ss")
(all-from "alist.ss")
(all-from "lset.ss"))
;;end of the unit
)
(provide (all-from "cons.ss")
(all-from "selector.ss")
(all-from "predicate.ss")
(all-from "misc.ss")
(all-from "fold.ss")
(all-from "search.ss")
(all-from "filter.ss")
(all-from "delete.ss")
(all-from "alist.ss")
(all-from "lset.ss"))

View File

@ -2,7 +2,7 @@
;;; <lset.ss> ---- Lists as Sets
;;; Time-stamp: <03/03/13 16:20:56 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -32,211 +32,201 @@
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;; -Olin
(module lset
mzscheme
#lang mzscheme
(require srfi/optional
(all-except "search.ss" member)
(all-except "fold.ss" map for-each)
(rename "search.ss" s:member member)
"delete.ss"
"predicate.ss"
"filter.ss")
(require srfi/8/receive)
(require srfi/optional
(all-except "search.ss" member)
(all-except "fold.ss" map for-each)
(rename "search.ss" s:member member)
"delete.ss"
"predicate.ss"
"filter.ss"
srfi/8/receive)
(provide lset<=
lset=
lset-adjoin
lset-union
(rename lset-union lset-union!)
lset-intersection
lset-difference
(rename lset-difference lset-difference!)
lset-xor
(rename lset-xor lset-xor!)
lset-diff+intersection
(rename lset-diff+intersection lset-diff+intersection!))
(provide lset<=
lset=
lset-adjoin
lset-union
(rename lset-union lset-union!)
lset-intersection
lset-difference
(rename lset-difference lset-difference!)
lset-xor
(rename lset-xor lset-xor!)
lset-diff+intersection
(rename lset-diff+intersection lset-diff+intersection!))
;; Lists-as-sets
;;;;;;;;;;;;;;;;;
;; Lists-as-sets
;;;;;;;;;;;;;;;;;
;; This is carefully tuned code; do not modify casually.
;; - It is careful to share storage when possible;
;; - Side-effecting code tries not to perform redundant writes.
;; - It tries to avoid linear-time scans in special cases where constant-time
;; computations can be performed.
;; - It relies on similar properties from the other list-lib procs it calls.
;; For example, it uses the fact that the implementations of MEMBER and
;; FILTER in this source code share longest common tails between args
;; and results to get structure sharing in the lset procedures.
(define (%lset2<= = lis1 lis2) (every (lambda (x) (s:member x lis2 =)) lis1))
(define (lset<= = . lists)
(check-arg procedure? = 'lset<=)
(or (not (pair? lists)) ; 0-ary case
(let lp ((s1 (car lists)) (rest (cdr lists)))
(or (not (pair? rest))
(let ((s2 (car rest)) (rest (cdr rest)))
(and (or (eq? s2 s1) ; Fast path
(%lset2<= = s1 s2)) ; Real test
(lp s2 rest)))))))
(define (lset= = . lists)
(check-arg procedure? = 'lset=)
(or (not (pair? lists)) ; 0-ary case
(let lp ((s1 (car lists)) (rest (cdr lists)))
(or (not (pair? rest))
(let ((s2 (car rest))
(rest (cdr rest)))
(and (or (eq? s1 s2) ; Fast path
(and (%lset2<= = s1 s2) (%lset2<= = s2 s1))) ; Real test
(lp s2 rest)))))))
(define (lset-adjoin = lis . elts)
(check-arg procedure? = 'lset-adjoin)
(fold (lambda (elt ans) (if (s:member elt ans =) ans (cons elt ans)))
lis elts))
(define (lset-union = . lists)
(check-arg procedure? = 'lset-union)
(reduce (lambda (lis ans) ; Compute ANS + LIS.
(cond ((null? lis) ans) ; Don't copy any lists
((null? ans) lis) ; if we don't have to.
((eq? lis ans) ans)
(else
(fold (lambda (elt ans) (if (any (lambda (x) (= x elt)) ans)
ans
(cons elt ans)))
ans lis))))
'() lists))
#;
(define (lset-union! = . lists)
(check-arg procedure? = 'lset-union!)
(reduce (lambda (lis ans) ; Splice new elts of LIS onto the front of ANS.
(cond ((null? lis) ans) ; Don't copy any lists
((null? ans) lis) ; if we don't have to.
((eq? lis ans) ans)
(else
(pair-fold (lambda (pair ans)
(let ((elt (car pair)))
(if (any (lambda (x) (= x elt)) ans)
ans
(begin (set-cdr! pair ans) pair))))
ans lis))))
'() lists))
(define (lset-intersection = lis1 . lists)
(check-arg procedure? = 'lset-intersection)
(let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
(cond ((any null-list? lists) '()) ; Short cut
((null? lists) lis1) ; Short cut
(else (filter (lambda (x)
(every (lambda (lis) (s:member x lis =)) lists))
lis1)))))
#;
(define (lset-intersection! = lis1 . lists)
(check-arg procedure? = 'lset-intersection!)
(let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
(cond ((any null-list? lists) '()) ; Short cut
((null? lists) lis1) ; Short cut
(else (filter! (lambda (x)
(every (lambda (lis) (s:member x lis =)) lists))
lis1)))))
(define (lset-difference = lis1 . lists)
(check-arg procedure? = 'lset-difference)
(let ((lists (filter pair? lists))) ; Throw out empty lists.
(cond ((null? lists) lis1) ; Short cut
((memq lis1 lists) '()) ; Short cut
(else (filter (lambda (x)
(every (lambda (lis) (not (s:member x lis =)))
lists))
lis1)))))
#;
(define (lset-difference! = lis1 . lists)
(check-arg procedure? = 'lset-difference!)
(let ((lists (filter pair? lists))) ; Throw out empty lists.
(cond ((null? lists) lis1) ; Short cut
((memq lis1 lists) '()) ; Short cut
(else (filter! (lambda (x)
(every (lambda (lis) (not (s:member x lis =)))
lists))
lis1)))))
(define (lset-xor = . lists)
(check-arg procedure? = 'lset-xor)
(reduce (lambda (b a) ; Compute A xor B:
;; Note that this code relies on the constant-time
;; short-cuts provided by LSET-DIFF+INTERSECTION,
;; LSET-DIFFERENCE & APPEND to provide constant-time short
;; cuts for the cases A = (), B = (), and A eq? B. It takes
;; a careful case analysis to see it, but it's carefully
;; built in.
;; Compute a-b and a^b, then compute b-(a^b) and
;; cons it onto the front of a-b.
(receive (a-b a-int-b) (lset-diff+intersection = a b)
(cond ((null? a-b) (lset-difference = b a))
((null? a-int-b) (append b a))
(else (fold (lambda (xb ans)
(if (s:member xb a-int-b =) ans (cons xb ans)))
a-b
b)))))
'() lists))
#;
(define (lset-xor! = . lists)
(check-arg procedure? = 'lset-xor!)
(reduce (lambda (b a) ; Compute A xor B:
;; Note that this code relies on the constant-time
;; short-cuts provided by LSET-DIFF+INTERSECTION,
;; LSET-DIFFERENCE & APPEND to provide constant-time short
;; cuts for the cases A = (), B = (), and A eq? B. It takes
;; a careful case analysis to see it, but it's carefully
;; built in.
;; Compute a-b and a^b, then compute b-(a^b) and
;; cons it onto the front of a-b.
(receive (a-b a-int-b) (lset-diff+intersection! = a b)
(cond ((null? a-b) (lset-difference! = b a))
((null? a-int-b) (append! b a))
(else (pair-fold (lambda (b-pair ans)
(if (s:member (car b-pair) a-int-b =) ans
(begin (set-cdr! b-pair ans) b-pair)))
a-b
b)))))
'() lists))
(define (lset-diff+intersection = lis1 . lists)
(check-arg procedure? = 'lset-diff+intersection)
(cond ((every null-list? lists) (values lis1 '())) ; Short cut
((memq lis1 lists) (values '() lis1)) ; Short cut
(else (partition (lambda (elt)
(not (any (lambda (lis) (s:member elt lis =))
lists)))
lis1))))
#;
(define (lset-diff+intersection! = lis1 . lists)
(check-arg procedure? = 'lset-diff+intersection!)
(cond ((every null-list? lists) (values lis1 '())) ; Short cut
((memq lis1 lists) (values '() lis1)) ; Short cut
(else (partition! (lambda (elt)
(not (any (lambda (lis) (s:member elt lis =))
lists)))
lis1))))
)
;; This is carefully tuned code; do not modify casually.
;; - It is careful to share storage when possible;
;; - Side-effecting code tries not to perform redundant writes.
;; - It tries to avoid linear-time scans in special cases where constant-time
;; computations can be performed.
;; - It relies on similar properties from the other list-lib procs it calls.
;; For example, it uses the fact that the implementations of MEMBER and
;; FILTER in this source code share longest common tails between args
;; and results to get structure sharing in the lset procedures.
(define (%lset2<= = lis1 lis2) (every (lambda (x) (s:member x lis2 =)) lis1))
(define (lset<= = . lists)
(check-arg procedure? = 'lset<=)
(or (not (pair? lists)) ; 0-ary case
(let lp ((s1 (car lists)) (rest (cdr lists)))
(or (not (pair? rest))
(let ((s2 (car rest)) (rest (cdr rest)))
(and (or (eq? s2 s1) ; Fast path
(%lset2<= = s1 s2)) ; Real test
(lp s2 rest)))))))
(define (lset= = . lists)
(check-arg procedure? = 'lset=)
(or (not (pair? lists)) ; 0-ary case
(let lp ((s1 (car lists)) (rest (cdr lists)))
(or (not (pair? rest))
(let ((s2 (car rest))
(rest (cdr rest)))
(and (or (eq? s1 s2) ; Fast path
(and (%lset2<= = s1 s2) (%lset2<= = s2 s1))) ; Real test
(lp s2 rest)))))))
(define (lset-adjoin = lis . elts)
(check-arg procedure? = 'lset-adjoin)
(fold (lambda (elt ans) (if (s:member elt ans =) ans (cons elt ans)))
lis elts))
(define (lset-union = . lists)
(check-arg procedure? = 'lset-union)
(reduce (lambda (lis ans) ; Compute ANS + LIS.
(cond ((null? lis) ans) ; Don't copy any lists
((null? ans) lis) ; if we don't have to.
((eq? lis ans) ans)
(else
(fold (lambda (elt ans)
(if (any (lambda (x) (= x elt)) ans)
ans
(cons elt ans)))
ans lis))))
'() lists))
#;
(define (lset-union! = . lists)
(check-arg procedure? = 'lset-union!)
(reduce (lambda (lis ans) ; Splice new elts of LIS onto the front of ANS.
(cond ((null? lis) ans) ; Don't copy any lists
((null? ans) lis) ; if we don't have to.
((eq? lis ans) ans)
(else
(pair-fold (lambda (pair ans)
(let ((elt (car pair)))
(if (any (lambda (x) (= x elt)) ans)
ans
(begin (set-cdr! pair ans) pair))))
ans lis))))
'() lists))
(define (lset-intersection = lis1 . lists)
(check-arg procedure? = 'lset-intersection)
(let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
(cond ((any null-list? lists) '()) ; Short cut
((null? lists) lis1) ; Short cut
(else (filter (lambda (x)
(every (lambda (lis) (s:member x lis =)) lists))
lis1)))))
#;
(define (lset-intersection! = lis1 . lists)
(check-arg procedure? = 'lset-intersection!)
(let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
(cond ((any null-list? lists) '()) ; Short cut
((null? lists) lis1) ; Short cut
(else (filter! (lambda (x)
(every (lambda (lis) (s:member x lis =)) lists))
lis1)))))
(define (lset-difference = lis1 . lists)
(check-arg procedure? = 'lset-difference)
(let ((lists (filter pair? lists))) ; Throw out empty lists.
(cond ((null? lists) lis1) ; Short cut
((memq lis1 lists) '()) ; Short cut
(else (filter (lambda (x)
(every (lambda (lis) (not (s:member x lis =)))
lists))
lis1)))))
#;
(define (lset-difference! = lis1 . lists)
(check-arg procedure? = 'lset-difference!)
(let ((lists (filter pair? lists))) ; Throw out empty lists.
(cond ((null? lists) lis1) ; Short cut
((memq lis1 lists) '()) ; Short cut
(else (filter! (lambda (x)
(every (lambda (lis) (not (s:member x lis =)))
lists))
lis1)))))
(define (lset-xor = . lists)
(check-arg procedure? = 'lset-xor)
(reduce (lambda (b a) ; Compute A xor B:
;; Note that this code relies on the constant-time
;; short-cuts provided by LSET-DIFF+INTERSECTION,
;; LSET-DIFFERENCE & APPEND to provide constant-time short
;; cuts for the cases A = (), B = (), and A eq? B. It takes
;; a careful case analysis to see it, but it's carefully
;; built in.
;; Compute a-b and a^b, then compute b-(a^b) and
;; cons it onto the front of a-b.
(receive (a-b a-int-b) (lset-diff+intersection = a b)
(cond ((null? a-b) (lset-difference = b a))
((null? a-int-b) (append b a))
(else (fold (lambda (xb ans)
(if (s:member xb a-int-b =) ans (cons xb ans)))
a-b
b)))))
'() lists))
#;
(define (lset-xor! = . lists)
(check-arg procedure? = 'lset-xor!)
(reduce (lambda (b a) ; Compute A xor B:
;; Note that this code relies on the constant-time
;; short-cuts provided by LSET-DIFF+INTERSECTION,
;; LSET-DIFFERENCE & APPEND to provide constant-time short
;; cuts for the cases A = (), B = (), and A eq? B. It takes
;; a careful case analysis to see it, but it's carefully
;; built in.
;; Compute a-b and a^b, then compute b-(a^b) and
;; cons it onto the front of a-b.
(receive (a-b a-int-b) (lset-diff+intersection! = a b)
(cond ((null? a-b) (lset-difference! = b a))
((null? a-int-b) (append! b a))
(else (pair-fold
(lambda (b-pair ans)
(if (s:member (car b-pair) a-int-b =) ans
(begin (set-cdr! b-pair ans) b-pair)))
a-b
b)))))
'() lists))
(define (lset-diff+intersection = lis1 . lists)
(check-arg procedure? = 'lset-diff+intersection)
(cond ((every null-list? lists) (values lis1 '())) ; Short cut
((memq lis1 lists) (values '() lis1)) ; Short cut
(else (partition (lambda (elt)
(not (any (lambda (lis) (s:member elt lis =))
lists)))
lis1))))
#;
(define (lset-diff+intersection! = lis1 . lists)
(check-arg procedure? = 'lset-diff+intersection!)
(cond ((every null-list? lists) (values lis1 '())) ; Short cut
((memq lis1 lists) (values '() lis1)) ; Short cut
(else (partition! (lambda (elt)
(not (any (lambda (lis) (s:member elt lis =))
lists)))
lis1))))
;;; lset.ss ends here

View File

@ -2,7 +2,7 @@
;;; <misc.ss> ---- Miscellaneous list procedures
;;; Time-stamp: <02/03/01 13:52:22 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -32,171 +32,161 @@
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;; -Olin
(module misc
mzscheme
#lang mzscheme
(require srfi/optional
"predicate.ss"
"selector.ss"
"util.ss"
(only "fold.ss" reduce-right)
(rename "fold.ss" srfi-1:map map))
(require srfi/8/receive)
(require srfi/optional
"predicate.ss"
"selector.ss"
"util.ss"
(only "fold.ss" reduce-right)
(rename "fold.ss" srfi-1:map map)
srfi/8/receive)
(provide length+
concatenate
(rename append append!)
(rename concatenate concatenate!)
(rename reverse reverse!)
append-reverse
(rename append-reverse append-reverse!)
zip
unzip1
unzip2
unzip3
unzip4
unzip5
count)
(provide length+
concatenate
(rename append append!)
(rename concatenate concatenate!)
(rename reverse reverse!)
append-reverse
(rename append-reverse append-reverse!)
zip
unzip1
unzip2
unzip3
unzip4
unzip5
count)
;; count
;;;;;;;;
(define (count pred list1 . lists)
(check-arg procedure? pred 'count)
(if (pair? lists)
;; N-ary case
(let lp ((list1 list1) (lists lists) (i 0))
(if (null-list? list1) i
(receive (as ds) (%cars+cdrs lists)
(if (null? as) i
(lp (cdr list1) ds
(if (apply pred (car list1) as) (+ i 1) i))))))
;; Fast path
(let lp ((lis list1) (i 0))
(if (null-list? lis) i
(lp (cdr lis) (if (pred (car lis)) (+ i 1) i))))))
(define (length+ x) ; Returns #f if X is circular.
(let lp ((x x) (lag x) (len 0))
(if (pair? x)
(let ((x (cdr x))
(len (+ len 1)))
(if (pair? x)
(let ((x (cdr x))
(lag (cdr lag))
(len (+ len 1)))
(and (not (eq? x lag)) (lp x lag len)))
len))
len)))
(define (zip list1 . more-lists) (apply srfi-1:map list list1 more-lists))
;; Unzippers -- 1 through 5
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (unzip1 lis) (map car lis))
(define (unzip2 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle
(let ((elt (car lis))) ; dotted lists.
(receive (a b) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)))))))
(define (unzip3 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis lis)
(let ((elt (car lis)))
(receive (a b c) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)
(cons (caddr elt) c)))))))
(define (unzip4 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis lis lis)
(let ((elt (car lis)))
(receive (a b c d) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)
(cons (caddr elt) c)
(cons (cadddr elt) d)))))))
(define (unzip5 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis lis lis lis)
(let ((elt (car lis)))
(receive (a b c d e) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)
(cons (caddr elt) c)
(cons (cadddr elt) d)
(cons (car (cddddr elt)) e)))))))
;; append! append-reverse append-reverse! concatenate concatenate!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
#;
(define (my-append! . lists)
;; First, scan through lists looking for a non-empty one.
(let lp ((lists lists) (prev '()))
(if (not (pair? lists)) prev
(let ((first (car lists))
(rest (cdr lists)))
(if (not (pair? first)) (lp rest first)
;; Now, do the splicing.
(let lp2 ((tail-cons (last-pair first))
(rest rest))
(if (pair? rest)
(let ((next (car rest))
(rest (cdr rest)))
(set-cdr! tail-cons next)
(lp2 (if (pair? next) (last-pair next) tail-cons)
rest))
first)))))))
;; count
;;;;;;;;
(define (count pred list1 . lists)
(check-arg procedure? pred 'count)
(if (pair? lists)
;;(define (append-reverse rev-head tail) (fold cons tail rev-head))
;; N-ary case
(let lp ((list1 list1) (lists lists) (i 0))
(if (null-list? list1) i
(receive (as ds) (%cars+cdrs lists)
(if (null? as) i
(lp (cdr list1) ds
(if (apply pred (car list1) as) (+ i 1) i))))))
;;(define (append-reverse! rev-head tail)
;; (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair)
;; tail
;; rev-head))
;; Fast path
(let lp ((lis list1) (i 0))
(if (null-list? lis) i
(lp (cdr lis) (if (pred (car lis)) (+ i 1) i))))))
;; Hand-inline the FOLD and PAIR-FOLD ops for speed.
(define (append-reverse rev-head tail)
(let lp ((rev-head rev-head) (tail tail))
(if (null-list? rev-head) tail
(lp (cdr rev-head) (cons (car rev-head) tail)))))
(define (length+ x) ; Returns #f if X is circular.
(let lp ((x x) (lag x) (len 0))
(if (pair? x)
(let ((x (cdr x))
(len (+ len 1)))
(if (pair? x)
(let ((x (cdr x))
(lag (cdr lag))
(len (+ len 1)))
(and (not (eq? x lag)) (lp x lag len)))
len))
len)))
#;
(define (append-reverse! rev-head tail)
(let lp ((rev-head rev-head) (tail tail))
(if (null-list? rev-head) tail
(let ((next-rev (cdr rev-head)))
(set-cdr! rev-head tail)
(lp next-rev rev-head)))))
(define (concatenate lists) (reduce-right append '() lists))
#;
(define (concatenate! lists) (reduce-right my-append! '() lists))
#;
(define (my-reverse! lis)
(let lp ((lis lis) (ans '()))
(if (null-list? lis) ans
(let ((tail (cdr lis)))
(set-cdr! lis ans)
(lp tail lis)))))
(define (zip list1 . more-lists) (apply srfi-1:map list list1 more-lists))
;; Unzippers -- 1 through 5
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (unzip1 lis) (map car lis))
(define (unzip2 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle
(let ((elt (car lis))) ; dotted lists.
(receive (a b) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)))))))
(define (unzip3 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis lis)
(let ((elt (car lis)))
(receive (a b c) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)
(cons (caddr elt) c)))))))
(define (unzip4 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis lis lis)
(let ((elt (car lis)))
(receive (a b c d) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)
(cons (caddr elt) c)
(cons (cadddr elt) d)))))))
(define (unzip5 lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis lis lis lis)
(let ((elt (car lis)))
(receive (a b c d e) (recur (cdr lis))
(values (cons (car elt) a)
(cons (cadr elt) b)
(cons (caddr elt) c)
(cons (cadddr elt) d)
(cons (car (cddddr elt)) e)))))))
;; append! append-reverse append-reverse! concatenate concatenate!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
#;
(define (my-append! . lists)
;; First, scan through lists looking for a non-empty one.
(let lp ((lists lists) (prev '()))
(if (not (pair? lists)) prev
(let ((first (car lists))
(rest (cdr lists)))
(if (not (pair? first)) (lp rest first)
; ;; Now, do the splicing.
(let lp2 ((tail-cons (last-pair first))
(rest rest))
(if (pair? rest)
(let ((next (car rest))
(rest (cdr rest)))
(set-cdr! tail-cons next)
(lp2 (if (pair? next) (last-pair next) tail-cons)
rest))
first)))))))
;;(define (append-reverse rev-head tail) (fold cons tail rev-head))
;;(define (append-reverse! rev-head tail)
;; (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair)
;; tail
;; rev-head))
;; Hand-inline the FOLD and PAIR-FOLD ops for speed.
(define (append-reverse rev-head tail)
(let lp ((rev-head rev-head) (tail tail))
(if (null-list? rev-head) tail
(lp (cdr rev-head) (cons (car rev-head) tail)))))
#;
(define (append-reverse! rev-head tail)
(let lp ((rev-head rev-head) (tail tail))
(if (null-list? rev-head) tail
(let ((next-rev (cdr rev-head)))
(set-cdr! rev-head tail)
(lp next-rev rev-head)))))
(define (concatenate lists) (reduce-right append '() lists))
#;
(define (concatenate! lists) (reduce-right my-append! '() lists))
#;
(define (my-reverse! lis)
(let lp ((lis lis) (ans '()))
(if (null-list? lis) ans
(let ((tail (cdr lis)))
(set-cdr! lis ans)
(lp tail lis)))))
)
;;; misc.ss ends here

View File

@ -2,7 +2,7 @@
;;; <predicate.ss> ---- List Predicates
;;; Time-stamp: <02/02/27 12:57:15 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -33,91 +33,86 @@
;; -Olin
(module predicate
mzscheme
#lang mzscheme
(require srfi/optional)
(require srfi/optional)
(provide pair?
null?
proper-list?
circular-list?
dotted-list?
not-pair?
null-list?
list=)
(provide pair?
null?
proper-list?
circular-list?
dotted-list?
not-pair?
null-list?
list=)
;; <proper-list> ::= () ; Empty proper list
;; | (cons <x> <proper-list>) ; Proper-list pair
;; Note that this definition rules out circular lists -- and this
;; function is required to detect this case and return false.
(define (proper-list? x)
(let lp ((x x) (lag x))
(if (pair? x)
(let ((x (cdr x)))
(if (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(and (not (eq? x lag)) (lp x lag)))
(null? x)))
(null? x))))
;; A dotted list is a finite list (possibly of length 0) terminated
;; by a non-nil value. Any non-cons, non-nil value (e.g., "foo" or 5)
;; is a dotted list of length 0.
;;
;; <dotted-list> ::= <non-nil,non-pair> ; Empty dotted list
;; | (cons <x> <dotted-list>) ; Proper-list pair
(define (dotted-list? x)
(let lp ((x x) (lag x))
(if (pair? x)
(let ((x (cdr x)))
(if (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(and (not (eq? x lag)) (lp x lag)))
(not (null? x))))
(not (null? x)))))
(define (circular-list? x)
(let lp ((x x) (lag x))
(and (pair? x)
(let ((x (cdr x)))
(and (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(or (eq? x lag) (lp x lag))))))))
(define (not-pair? x) (not (pair? x))) ; Inline me.
;; This is a legal definition which is fast and sloppy:
;; (define null-list? not-pair?)
;; but we'll provide a more careful one:
(define (null-list? l)
(cond ((pair? l) #f)
((null? l) #t)
(else (error "null-list?: argument out of domain" l))))
(define (list= = . lists)
(or (null? lists) ; special case
(let lp1 ((list-a (car lists)) (others (cdr lists)))
(or (null? others)
(let ((list-b (car others))
(others (cdr others)))
(if (eq? list-a list-b) ; EQ? => LIST=
(lp1 list-b others)
(let lp2 ((la list-a) (lb list-b))
(if (null-list? la)
(and (null-list? lb)
(lp1 list-b others))
(and (not (null-list? lb))
(= (car la) (car lb))
(lp2 (cdr la) (cdr lb)))))))))))
;; <proper-list> ::= () ; Empty proper list
;; | (cons <x> <proper-list>) ; Proper-list pair
;; Note that this definition rules out circular lists -- and this
;; function is required to detect this case and return false.
(define (proper-list? x)
(let lp ((x x) (lag x))
(if (pair? x)
(let ((x (cdr x)))
(if (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(and (not (eq? x lag)) (lp x lag)))
(null? x)))
(null? x))))
;; A dotted list is a finite list (possibly of length 0) terminated
;; by a non-nil value. Any non-cons, non-nil value (e.g., "foo" or 5)
;; is a dotted list of length 0.
;;
;; <dotted-list> ::= <non-nil,non-pair> ; Empty dotted list
;; | (cons <x> <dotted-list>) ; Proper-list pair
(define (dotted-list? x)
(let lp ((x x) (lag x))
(if (pair? x)
(let ((x (cdr x)))
(if (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(and (not (eq? x lag)) (lp x lag)))
(not (null? x))))
(not (null? x)))))
(define (circular-list? x)
(let lp ((x x) (lag x))
(and (pair? x)
(let ((x (cdr x)))
(and (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(or (eq? x lag) (lp x lag))))))))
(define (not-pair? x) (not (pair? x))) ; Inline me.
;; This is a legal definition which is fast and sloppy:
;; (define null-list? not-pair?)
;; but we'll provide a more careful one:
(define (null-list? l)
(cond ((pair? l) #f)
((null? l) #t)
(else (error "null-list?: argument out of domain" l))))
(define (list= = . lists)
(or (null? lists) ; special case
(let lp1 ((list-a (car lists)) (others (cdr lists)))
(or (null? others)
(let ((list-b (car others))
(others (cdr others)))
(if (eq? list-a list-b) ; EQ? => LIST=
(lp1 list-b others)
(let lp2 ((la list-a) (lb list-b))
(if (null-list? la)
(and (null-list? lb)
(lp1 list-b others))
(and (not (null-list? lb))
(= (car la) (car lb))
(lp2 (cdr la) (cdr lb)))))))))))
)
;;; predicate.ss ends here

View File

@ -2,7 +2,7 @@
;;; <search.ss> ---- List searching functions
;;; Time-stamp: <02/02/28 12:11:01 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -32,124 +32,118 @@
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;; -Olin
(module search
mzscheme
#lang mzscheme
(require mzlib/etc
srfi/optional
"predicate.ss"
"util.ss")
(require srfi/8/receive)
(require mzlib/etc
srfi/optional
"predicate.ss"
"util.ss"
srfi/8/receive)
(provide (rename my-member member)
find
find-tail
any
every
list-index
take-while
drop-while
(rename take-while take-while!)
span
break
(rename span span!)
(rename break break!))
(provide (rename my-member member)
find
find-tail
any
every
list-index
take-while
drop-while
(rename take-while take-while!)
span
break
(rename span span!)
(rename break break!))
;; Extended from R4RS to take an optional comparison argument.
(define my-member
(opt-lambda (x lis (maybe-= equal?))
(let ((= maybe-=))
(find-tail (lambda (y) (= x y)) lis))))
;; Extended from R4RS to take an optional comparison argument.
(define my-member
(opt-lambda (x lis (maybe-= equal?))
(let ((= maybe-=))
(find-tail (lambda (y) (= x y)) lis))))
;; find find-tail take-while drop-while span break any every list-index
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; find find-tail take-while drop-while span break any every list-index
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (find pred list)
(cond ((find-tail pred list) => car)
(else #f)))
(define (find pred list)
(cond ((find-tail pred list) => car)
(else #f)))
(define (find-tail pred list)
(check-arg procedure? pred 'find-tail)
(let lp ((list list))
(and (not (null-list? list))
(if (pred (car list)) list
(lp (cdr list))))))
(define (take-while pred lis)
(check-arg procedure? pred 'take-while)
(let recur ((lis lis))
(if (null-list? lis) '()
(let ((x (car lis)))
(if (pred x)
(cons x (recur (cdr lis)))
'())))))
(define (drop-while pred lis)
(check-arg procedure? pred 'drop-while)
(let lp ((lis lis))
(if (null-list? lis) '()
(if (pred (car lis))
(lp (cdr lis))
lis))))
#;
(define (take-while! pred lis)
(check-arg procedure? pred 'take-while!)
(if (or (null-list? lis) (not (pred (car lis)))) '()
(begin (let lp ((prev lis) (rest (cdr lis)))
(if (pair? rest)
(let ((x (car rest)))
(if (pred x) (lp rest (cdr rest))
(set-cdr! prev '())))))
lis)))
(define (span pred lis)
(check-arg procedure? pred 'span)
(let recur ((lis lis))
(if (null-list? lis) (values '() '())
(let ((x (car lis)))
(if (pred x)
(receive (prefix suffix) (recur (cdr lis))
(values (cons x prefix) suffix))
(values '() lis))))))
(define (find-tail pred list)
(check-arg procedure? pred 'find-tail)
(let lp ((list list))
(and (not (null-list? list))
(if (pred (car list)) list
(lp (cdr list))))))
(define (take-while pred lis)
(check-arg procedure? pred 'take-while)
(let recur ((lis lis))
(if (null-list? lis) '()
(let ((x (car lis)))
(if (pred x)
(cons x (recur (cdr lis)))
'())))))
(define (drop-while pred lis)
(check-arg procedure? pred 'drop-while)
(let lp ((lis lis))
(cond ((null-list? lis) '())
((pred (car lis)) (lp (cdr lis)))
(else lis))))
#;
(define (span! pred lis)
(check-arg procedure? pred 'span!)
(if (or (null-list? lis) (not (pred (car lis)))) (values '() lis)
(let ((suffix (let lp ((prev lis) (rest (cdr lis)))
(if (null-list? rest) rest
(let ((x (car rest)))
(if (pred x) (lp rest (cdr rest))
(begin (set-cdr! prev '())
rest)))))))
(values lis suffix))))
(define (break pred lis) (span (lambda (x) (not (pred x))) lis))
#;
(define (break! pred lis) (span! (lambda (x) (not (pred x))) lis))
(define (any pred lis1 . lists)
(check-arg procedure? pred 'any)
(if (pair? lists)
;; N-ary case
(receive (heads tails) (%cars+cdrs (cons lis1 lists))
(and (pair? heads)
(let lp ((heads heads) (tails tails))
(receive (next-heads next-tails) (%cars+cdrs tails)
(if (pair? next-heads)
(or (apply pred heads) (lp next-heads next-tails))
(apply pred heads)))))) ; Last PRED app is tail call.
;; Fast path
(and (not (null-list? lis1))
(let lp ((head (car lis1)) (tail (cdr lis1)))
(if (null-list? tail)
(pred head) ; Last PRED app is tail call.
(or (pred head) (lp (car tail) (cdr tail))))))))
(define (take-while! pred lis)
(check-arg procedure? pred 'take-while!)
(if (or (null-list? lis) (not (pred (car lis)))) '()
(begin (let lp ((prev lis) (rest (cdr lis)))
(if (pair? rest)
(let ((x (car rest)))
(if (pred x) (lp rest (cdr rest))
(set-cdr! prev '())))))
lis)))
(define (span pred lis)
(check-arg procedure? pred 'span)
(let recur ((lis lis))
(if (null-list? lis) (values '() '())
(let ((x (car lis)))
(if (pred x)
(receive (prefix suffix) (recur (cdr lis))
(values (cons x prefix) suffix))
(values '() lis))))))
#;
(define (span! pred lis)
(check-arg procedure? pred 'span!)
(if (or (null-list? lis) (not (pred (car lis)))) (values '() lis)
(let ((suffix (let lp ((prev lis) (rest (cdr lis)))
(if (null-list? rest) rest
(let ((x (car rest)))
(if (pred x) (lp rest (cdr rest))
(begin (set-cdr! prev '())
rest)))))))
(values lis suffix))))
(define (break pred lis) (span (lambda (x) (not (pred x))) lis))
#;
(define (break! pred lis) (span! (lambda (x) (not (pred x))) lis))
(define (any pred lis1 . lists)
(check-arg procedure? pred 'any)
(if (pair? lists)
;; N-ary case
(receive (heads tails) (%cars+cdrs (cons lis1 lists))
(and (pair? heads)
(let lp ((heads heads) (tails tails))
(receive (next-heads next-tails) (%cars+cdrs tails)
(if (pair? next-heads)
(or (apply pred heads) (lp next-heads next-tails))
(apply pred heads)))))) ; Last PRED app is tail call.
;; Fast path
(and (not (null-list? lis1))
(let lp ((head (car lis1)) (tail (cdr lis1)))
(if (null-list? tail)
(pred head) ; Last PRED app is tail call.
(or (pred head) (lp (car tail) (cdr tail))))))))
;(define (every pred list) ; Simple definition.
; (let lp ((list list)) ; Doesn't return the last PRED value.
@ -157,41 +151,36 @@
; (and (pred (car list))
; (lp (cdr list))))))
(define (every pred lis1 . lists)
(check-arg procedure? pred 'every)
(if (pair? lists)
;; N-ary case
(receive (heads tails) (%cars+cdrs (cons lis1 lists))
(or (not (pair? heads))
(let lp ((heads heads) (tails tails))
(receive (next-heads next-tails) (%cars+cdrs tails)
(if (pair? next-heads)
(and (apply pred heads) (lp next-heads next-tails))
(apply pred heads)))))) ; Last PRED app is tail call.
;; Fast path
(or (null-list? lis1)
(let lp ((head (car lis1)) (tail (cdr lis1)))
(if (null-list? tail)
(pred head) ; Last PRED app is tail call.
(and (pred head) (lp (car tail) (cdr tail))))))))
(define (every pred lis1 . lists)
(check-arg procedure? pred 'every)
(if (pair? lists)
;; N-ary case
(receive (heads tails) (%cars+cdrs (cons lis1 lists))
(or (not (pair? heads))
(let lp ((heads heads) (tails tails))
(receive (next-heads next-tails) (%cars+cdrs tails)
(if (pair? next-heads)
(and (apply pred heads) (lp next-heads next-tails))
(apply pred heads)))))) ; Last PRED app is tail call.
;; Fast path
(or (null-list? lis1)
(let lp ((head (car lis1)) (tail (cdr lis1)))
(if (null-list? tail)
(pred head) ; Last PRED app is tail call.
(and (pred head) (lp (car tail) (cdr tail))))))))
(define (list-index pred lis1 . lists)
(check-arg procedure? pred 'list-index)
(if (pair? lists)
;; N-ary case
(let lp ((lists (cons lis1 lists)) (n 0))
(receive (heads tails) (%cars+cdrs lists)
(and (pair? heads)
(if (apply pred heads) n
(lp tails (+ n 1))))))
(define (list-index pred lis1 . lists)
(check-arg procedure? pred 'list-index)
(if (pair? lists)
;; N-ary case
(let lp ((lists (cons lis1 lists)) (n 0))
(receive (heads tails) (%cars+cdrs lists)
(and (pair? heads)
(if (apply pred heads) n
(lp tails (+ n 1))))))
;; Fast path
(let lp ((lis lis1) (n 0))
(and (not (null-list? lis))
(if (pred (car lis)) n (lp (cdr lis) (+ n 1)))))))
;; Fast path
(let lp ((lis lis1) (n 0))
(and (not (null-list? lis))
(if (pred (car lis)) n (lp (cdr lis) (+ n 1)))))))
)
;;; search.ss ends here

View File

@ -2,7 +2,7 @@
;;; <selector.ss> ---- List selectors
;;; Time-stamp: <02/02/27 12:49:44 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -32,119 +32,112 @@
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;; -Olin
(module selector
mzscheme
#lang mzscheme
(require srfi/optional)
(require srfi/8/receive)
(require srfi/optional
srfi/8/receive)
(provide
first second
third fourth
fifth sixth
seventh eighth
ninth tenth
car+cdr
take drop
take-right drop-right
(rename take take!) (rename drop-right drop-right!)
split-at (rename split-at split-at!)
last
last-pair)
(provide first second
third fourth
fifth sixth
seventh eighth
ninth tenth
car+cdr
take drop
take-right drop-right
(rename take take!) (rename drop-right drop-right!)
split-at (rename split-at split-at!)
last
last-pair)
(define first car)
(define second cadr)
(define third caddr)
(define fourth cadddr)
(define (fifth x) (car (cddddr x)))
(define (sixth x) (cadr (cddddr x)))
(define (seventh x) (caddr (cddddr x)))
(define (eighth x) (cadddr (cddddr x)))
(define (ninth x) (car (cddddr (cddddr x))))
(define (tenth x) (cadr (cddddr (cddddr x))))
(define (car+cdr pair) (values (car pair) (cdr pair)))
(define first car)
(define second cadr)
(define third caddr)
(define fourth cadddr)
(define (fifth x) (car (cddddr x)))
(define (sixth x) (cadr (cddddr x)))
(define (seventh x) (caddr (cddddr x)))
(define (eighth x) (cadddr (cddddr x)))
(define (ninth x) (car (cddddr (cddddr x))))
(define (tenth x) (cadr (cddddr (cddddr x))))
(define (car+cdr pair) (values (car pair) (cdr pair)))
;; take & drop
(define (take lis k)
(check-arg integer? k 'take)
(let recur ((lis lis) (k k))
(if (zero? k) '()
(cons (car lis)
(recur (cdr lis) (- k 1))))))
(define (drop lis k)
(check-arg integer? k 'drop)
(let iter ((lis lis) (k k))
(if (zero? k) lis (iter (cdr lis) (- k 1)))))
#;
(define (take! lis k)
(check-arg integer? k 'take!)
(if (zero? k) '()
(begin (set-cdr! (drop lis (- k 1)) '())
lis)))
;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list,
;; off by K, then chasing down the list until the lead pointer falls off
;; the end.
(define (take-right lis k)
(check-arg integer? k 'take-right)
(let lp ((lag lis) (lead (drop lis k)))
(if (pair? lead)
(lp (cdr lag) (cdr lead))
lag)))
(define (drop-right lis k)
(check-arg integer? k 'drop-right)
(let recur ((lag lis) (lead (drop lis k)))
(if (pair? lead)
(cons (car lag) (recur (cdr lag) (cdr lead)))
'())))
;; In this function, LEAD is actually K+1 ahead of LAG. This lets
;; us stop LAG one step early, in time to smash its cdr to ().
#;
(define (drop-right! lis k)
(check-arg integer? k 'drop-right!)
(let ((lead (drop lis k)))
(if (pair? lead)
(let lp ((lag lis) (lead (cdr lead))) ; Standard case
(if (pair? lead)
(lp (cdr lag) (cdr lead))
(begin (set-cdr! lag '())
lis)))
'()))) ; Special case dropping everything -- no cons to side-effect.
(define (split-at x k)
(check-arg integer? k 'split-at)
(let recur ((lis x) (k k))
(if (zero? k) (values '() lis)
(receive (prefix suffix) (recur (cdr lis) (- k 1))
(values (cons (car lis) prefix) suffix)))))
#;
(define (split-at! x k)
(check-arg integer? k 'split-at!)
(if (zero? k) (values '() x)
(let* ((prev (drop x (- k 1)))
(suffix (cdr prev)))
(set-cdr! prev '())
(values x suffix))))
(define (last lis) (car (last-pair lis)))
(define (last-pair lis)
(check-arg pair? lis 'last-pair)
(let lp ((lis lis))
(let ((tail (cdr lis)))
(if (pair? tail) (lp tail) lis))))
;; take & drop
(define (take lis k)
(check-arg integer? k 'take)
(let recur ((lis lis) (k k))
(if (zero? k) '()
(cons (car lis)
(recur (cdr lis) (- k 1))))))
(define (drop lis k)
(check-arg integer? k 'drop)
(let iter ((lis lis) (k k))
(if (zero? k) lis (iter (cdr lis) (- k 1)))))
#;
(define (take! lis k)
(check-arg integer? k 'take!)
(if (zero? k) '()
(begin (set-cdr! (drop lis (- k 1)) '())
lis)))
;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list,
;; off by K, then chasing down the list until the lead pointer falls off
;; the end.
(define (take-right lis k)
(check-arg integer? k 'take-right)
(let lp ((lag lis) (lead (drop lis k)))
(if (pair? lead)
(lp (cdr lag) (cdr lead))
lag)))
(define (drop-right lis k)
(check-arg integer? k 'drop-right)
(let recur ((lag lis) (lead (drop lis k)))
(if (pair? lead)
(cons (car lag) (recur (cdr lag) (cdr lead)))
'())))
;; In this function, LEAD is actually K+1 ahead of LAG. This lets
;; us stop LAG one step early, in time to smash its cdr to ().
#;
(define (drop-right! lis k)
(check-arg integer? k 'drop-right!)
(let ((lead (drop lis k)))
(if (pair? lead)
(let lp ((lag lis) (lead (cdr lead))) ; Standard case
(if (pair? lead)
(lp (cdr lag) (cdr lead))
(begin (set-cdr! lag '())
lis)))
'()))) ; Special case dropping everything -- no cons to side-effect.
(define (split-at x k)
(check-arg integer? k 'split-at)
(let recur ((lis x) (k k))
(if (zero? k) (values '() lis)
(receive (prefix suffix) (recur (cdr lis) (- k 1))
(values (cons (car lis) prefix) suffix)))))
#;
(define (split-at! x k)
(check-arg integer? k 'split-at!)
(if (zero? k) (values '() x)
(let* ((prev (drop x (- k 1)))
(suffix (cdr prev)))
(set-cdr! prev '())
(values x suffix))))
(define (last lis) (car (last-pair lis)))
(define (last-pair lis)
(check-arg pair? lis 'last-pair)
(let lp ((lis lis))
(let ((tail (cdr lis)))
(if (pair? tail) (lp tail) lis))))
)
;;; selector.ss ends here

View File

@ -2,7 +2,7 @@
;;; <util.ss> ---- Utility functions
;;; Time-stamp: <02/02/28 12:05:00 noel>
;;;
;;; Copyright (C) 2002 by Noel Welsh.
;;; Copyright (C) 2002 by Noel Welsh.
;;;
;;; This file is part of SRFI-1.
@ -32,94 +32,91 @@
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;; -Olin
(module util
mzscheme
#lang mzscheme
(require srfi/optional
"predicate.ss"
"selector.ss")
(require srfi/8/receive)
(require srfi/optional
"predicate.ss"
"selector.ss"
srfi/8/receive)
(provide %cdrs
%cars+
%cars+cdrs
%cars+cdrs+
%cars+cdrs/no-test)
(provide %cdrs
%cars+
%cars+cdrs
%cars+cdrs+
%cars+cdrs/no-test)
;; Fold/map internal utilities
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; These little internal utilities are used by the general
;; fold & mapper funs for the n-ary cases . It'd be nice if they got inlined.
;; One the other hand, the n-ary cases are painfully inefficient as it is.
;; An aggressive implementation should simply re-write these functions
;; for raw efficiency; I have written them for as much clarity, portability,
;; and simplicity as can be achieved.
;;
;; I use the dreaded call/cc to do local aborts. A good compiler could
;; handle this with extreme efficiency. An implementation that provides
;; a one-shot, non-persistent continuation grabber could help the compiler
;; out by using that in place of the call/cc's in these routines.
;;
;; These functions have funky definitions that are precisely tuned to
;; the needs of the fold/map procs -- for example, to minimize the number
;; of times the argument lists need to be examined.
;; Return (map cdr lists).
;; However, if any element of LISTS is empty, just abort and return '().
(define (%cdrs lists)
(call-with-escape-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(let ((lis (car lists)))
(if (null-list? lis) (abort '())
(cons (cdr lis) (recur (cdr lists)))))
'())))))
(define (%cars+ lists last-elt) ; (append! (map car lists) (list last-elt))
(let recur ((lists lists))
(if (pair? lists) (cons (caar lists) (recur (cdr lists))) (list last-elt))))
;; LISTS is a (not very long) non-empty list of lists.
;; Return two lists: the cars & the cdrs of the lists.
;; However, if any of the lists is empty, just abort and return [() ()].
(define (%cars+cdrs lists)
(call-with-escape-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs))))))
(values '() '()))))))
;; Like %CARS+CDRS, but we pass in a final elt tacked onto the end of the
;; cars list. What a hack.
(define (%cars+cdrs+ lists cars-final)
(call-with-escape-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs))))))
(values (list cars-final) '()))))))
;; Like %CARS+CDRS, but blow up if any list is empty.
(define (%cars+cdrs/no-test lists)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs)))))
(values '() '()))))
)
;; Fold/map internal utilities
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; These little internal utilities are used by the general
;; fold & mapper funs for the n-ary cases . It'd be nice if they got inlined.
;; One the other hand, the n-ary cases are painfully inefficient as it is.
;; An aggressive implementation should simply re-write these functions
;; for raw efficiency; I have written them for as much clarity, portability,
;; and simplicity as can be achieved.
;;
;; I use the dreaded call/cc to do local aborts. A good compiler could
;; handle this with extreme efficiency. An implementation that provides
;; a one-shot, non-persistent continuation grabber could help the compiler
;; out by using that in place of the call/cc's in these routines.
;;
;; These functions have funky definitions that are precisely tuned to
;; the needs of the fold/map procs -- for example, to minimize the number
;; of times the argument lists need to be examined.
;; Return (map cdr lists).
;; However, if any element of LISTS is empty, just abort and return '().
(define (%cdrs lists)
(call-with-escape-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(let ((lis (car lists)))
(if (null-list? lis) (abort '())
(cons (cdr lis) (recur (cdr lists)))))
'())))))
(define (%cars+ lists last-elt) ; (append! (map car lists) (list last-elt))
(let recur ((lists lists))
(if (pair? lists) (cons (caar lists) (recur (cdr lists))) (list last-elt))))
;; LISTS is a (not very long) non-empty list of lists.
;; Return two lists: the cars & the cdrs of the lists.
;; However, if any of the lists is empty, just abort and return [() ()].
(define (%cars+cdrs lists)
(call-with-escape-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs))))))
(values '() '()))))))
;; Like %CARS+CDRS, but we pass in a final elt tacked onto the end of the
;; cars list. What a hack.
(define (%cars+cdrs+ lists cars-final)
(call-with-escape-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs))))))
(values (list cars-final) '()))))))
;; Like %CARS+CDRS, but blow up if any list is empty.
(define (%cars+cdrs/no-test lists)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs)))))
(values '() '()))))
;;; util.ss ends here