svn: r5897
This commit is contained in:
Chongkai Zhu 2007-04-09 04:56:48 +00:00
parent 61785f1fc8
commit 5947007621
9 changed files with 991 additions and 1630 deletions

View File

@ -1,215 +0,0 @@
;;;
;;; <constructors.ss> ---- Vector constructors
;;; Time-stamp: <05/03/07 18:19:59 Zhu Chongkai>
;;;
;;; Copyright (C) 2005-2006 by Zhu Chongkai.
;;;
;;; This file is part of SRFI-43.
;;; SRFI-43 is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Lesser General Public
;;; License as published by the Free Software Foundation; either
;;; version 2.1 of the License, or (at your option) any later version.
;;; SRFI-43 is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with SRFI-43; if not, write to the Free Software
;;; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
;;; Author: Zhu Chongkai <mrmathematica@yahoo.com>
;;
;;
;; Commentary:
;; Based on the reference implementation by Taylor Campbell and hence:
;;; Copyright (C) 2003, 2004 Taylor Campbell.
;;; All rights reserved.
;;;
;;; You may do as you please with this code, as long as you refrain
;;; from removing this copyright notice or holding me liable in _any_
;;; circumstances for _any_ damages that may be caused by it; and you
;;; may quote sections from it as you please, as long as you credit me.
(module constructors mzscheme
(require (lib "receive.ss" "srfi" "8")
"util.ss"
(lib "etc.ss" "mzlib"))
(provide vector-unfold
vector-unfold-right
vector-copy
vector-reverse-copy
vector-append
vector-concatenate)
;;; (VECTOR-UNFOLD <f> <length> <initial-seed> ...) -> vector
;;; (F <index> <seed> ...) -> [elt seed' ...]
;;; The fundamental vector constructor. Creates a vector whose
;;; length is LENGTH and iterates across each index K between 0 and
;;; LENGTH, applying F at each iteration to the current index and the
;;; current seeds to receive N+1 values: first, the element to put in
;;; the Kth slot and then N new seeds for the next iteration.
(define vector-unfold
(letrec ((tabulate! ; Special zero-seed case.
(lambda (f vec i len)
(cond ((< i len)
(vector-set! vec i (f i))
(tabulate! f vec (add1 i) len)))))
(unfold1! ; Fast path for one seed.
(lambda (f vec i len seed)
(if (< i len)
(receive (elt new-seed)
(f i seed)
(vector-set! vec i elt)
(unfold1! f vec (add1 i) len new-seed)))))
(unfold2+! ; Slower variant for N seeds.
(lambda (f vec i len seeds)
(if (< i len)
(receive (elt . new-seeds)
(apply f i seeds)
(vector-set! vec i elt)
(unfold2+! f vec (add1 i) len new-seeds))))))
(lambda (f len . initial-seeds)
(unless (procedure? f)
(apply raise-type-error
'vector-unfold "procedure" 0
f len initial-seeds))
(unless (nonneg-int? len)
(apply raise-type-error
'vector-unfold "non-negative exact integer" 1
f len initial-seeds))
(let ((vec (make-vector len)))
(cond ((null? initial-seeds)
(tabulate! f vec 0 len))
((null? (cdr initial-seeds))
(unfold1! f vec 0 len (car initial-seeds)))
(else
(unfold2+! f vec 0 len initial-seeds)))
vec))))
;;; (VECTOR-UNFOLD-RIGHT <f> <length> <initial-seed> ...) -> vector
;;; (F <seed> ...) -> [seed' ...]
;;; Like VECTOR-UNFOLD, but it generates elements from LENGTH to 0
;;; (still exclusive with LENGTH and inclusive with 0), not 0 to
;;; LENGTH as with VECTOR-UNFOLD.
(define vector-unfold-right
(letrec ((tabulate!
(lambda (f vec i)
(cond ((>= i 0)
(vector-set! vec i (f i))
(tabulate! f vec (sub1 i))))))
(unfold2+!
(lambda (f vec i seeds)
(if (>= i 0)
(receive (elt . new-seeds)
(apply f i seeds)
(vector-set! vec i elt)
(unfold2+! f vec (sub1 i) new-seeds))))))
(lambda (f len . initial-seeds)
(unless (procedure? f)
(apply raise-type-error
'vector-unfold-right "procedure" 0
f len initial-seeds))
(unless (nonneg-int? len)
(apply raise-type-error
'vector-unfold-right "non-negative exact integer" 1
f len initial-seeds))
(let ((vec (make-vector len))
(i (sub1 len)))
(cond ((null? initial-seeds)
(tabulate! f vec i))
((null? (cdr initial-seeds))
(unfold1! f vec i (car initial-seeds)))
(else
(unfold2+! f vec i initial-seeds)))
vec))))
;;; (VECTOR-COPY <vector> [<start> <end> <fill>]) -> vector
;;; Create a newly allocated vector containing the elements from the
;;; range [START,END) in VECTOR. START defaults to 0; END defaults
;;; to the length of VECTOR. END may be greater than the length of
;;; VECTOR, in which case the vector is enlarged; if FILL is passed,
;;; the new locations from which there is no respective element in
;;; VECTOR are filled with FILL.
(define (vector-copy vec . arg)
(unless (vector? vec)
(raise-type-error 'vector-copy "vector" vec))
(apply
(opt-lambda ((start 0) (end (vector-length vec)) (fill 0))
(check-index vec start 'vector-copy)
(unless (nonneg-int? end)
(raise-type-error 'vector-copy "non-negative exact integer" end))
(unless (<= start end)
(raise
(make-exn:fail:contract
(format "~a: indices (~a, ~a) out of range for vector: ~a"
'vector-copy start end vec)
(current-continuation-marks))))
(let ((new-vector
(make-vector (- end start) fill)))
(%vector-copy! new-vector 0
vec start
(min end (vector-length vec)))
new-vector))
arg))
;;; (VECTOR-REVERSE-COPY <vector> [<start> <end>]) -> vector
;;; Create a newly allocated vector whose elements are the reversed
;;; sequence of elements between START and END in VECTOR. START's
;;; default is 0; END's default is the length of VECTOR.
(define (vector-reverse-copy vec . arg)
(unless (vector? vec)
(raise-type-error 'vector-reverse-copy "vector" vec))
(let-values (((start end)
(check-indices vec arg 'vector-reverse-copy)))
(let ((new (make-vector (- end start))))
(%vector-reverse-copy! new 0 vec start end)
new)))
;;; (VECTOR-APPEND <vector> ...) -> vector
;;; Append VECTOR ... into a newly allocated vector and return that
;;; new vector.
(define (vector-append . vectors)
(check-list-of-vecs vectors 'vector-append)
(vector-concatenate:aux vectors))
;;; (VECTOR-CONCATENATE <vector-list>) -> vector
;;; Concatenate the vectors in VECTOR-LIST. This is equivalent to
;;; (apply vector-append VECTOR-LIST)
;;; Actually, they're both implemented in terms of an internal routine.
(define (vector-concatenate vector-list)
(unless (and (list? vector-list)
(andmap vector? vector-list))
(raise-type-error 'vector-concatenate "list of vectors" vector-list))
(vector-concatenate:aux vector-list))
;;; Auxiliary for VECTOR-APPEND and VECTOR-CONCATENATE
(define vector-concatenate:aux
(letrec ((compute-length
(lambda (vectors len)
(if (null? vectors)
len
(let ((vec (car vectors)))
(compute-length (cdr vectors)
(+ (vector-length vec) len))))))
(concatenate!
(lambda (vectors target to)
(if (null? vectors)
target
(let* ((vec1 (car vectors))
(len (vector-length vec1)))
(%vector-copy! target to vec1 0 len)
(concatenate! (cdr vectors) target
(+ to len)))))))
(lambda (vectors)
(let ((new-vector
(make-vector (compute-length vectors 0))))
(concatenate! vectors new-vector 0)
new-vector)))))

View File

@ -1,98 +0,0 @@
;;;
;;; <conversion.ss> ---- Vector conversion
;;; Time-stamp: <05/03/07 18:19:59 Zhu Chongkai>
;;;
;;; Copyright (C) 2005-2006 by Zhu Chongkai.
;;;
;;; This file is part of SRFI-43.
;;; SRFI-43 is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Lesser General Public
;;; License as published by the Free Software Foundation; either
;;; version 2.1 of the License, or (at your option) any later version.
;;; SRFI-43 is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with SRFI-43; if not, write to the Free Software
;;; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
;;; Author: Zhu Chongkai <mrmathematica@yahoo.com>
;;
;;
;; Commentary:
;; Based on the reference implementation by Taylor Campbell and hence:
;;; Copyright (C) 2003, 2004 Taylor Campbell.
;;; All rights reserved.
;;;
;;; You may do as you please with this code, as long as you refrain
;;; from removing this copyright notice or holding me liable in _any_
;;; circumstances for _any_ damages that may be caused by it; and you
;;; may quote sections from it as you please, as long as you credit me.
(module conversion mzscheme
(require "util.ss")
(provide (rename my-vector->list vector->list)
reverse-vector->list
reverse-list->vector)
;;; (VECTOR->LIST <vector> [<start> <end>]) -> list
;;; [R5RS+] Produce a list containing the elements in the locations
;;; between START, whose default is 0, and END, whose default is the
;;; length of VECTOR, from VECTOR.
(define (my-vector->list vec . maybe-start+end)
(unless (vector? vec)
(apply raise-type-error
'vector->list "vector" 0
vec maybe-start+end))
(if (null? maybe-start+end)
(vector->list vec) ;+++
(let-values (((start end)
(check-indices vec maybe-start+end 'vector->list)))
;(unfold (lambda (i) ; No SRFI 1.
; (< i start))
; (lambda (i) (vector-ref vec i))
; (lambda (i) (sub1 i))
; (sub1 end))
(do ((i (sub1 end) (sub1 i))
(result '() (cons (vector-ref vec i) result)))
((< i start) result)))))
;;; (REVERSE-VECTOR->LIST <vector> [<start> <end>]) -> list
;;; Produce a list containing the elements in the locations between
;;; START, whose default is 0, and END, whose default is the length
;;; of VECTOR, from VECTOR, in reverse order.
(define (reverse-vector->list vec . maybe-start+end)
(unless (vector? vec)
(apply raise-type-error
'reverse-vector->list "vector" 0
vec maybe-start+end))
(let-values (((start end)
(check-indices vec maybe-start+end 'reverse-vector->list)))
;(unfold (lambda (i) (= i end)) ; No SRFI 1.
; (lambda (i) (vector-ref vec i))
; (lambda (i) (add1 i))
; start)
(do ((i start (add1 i))
(result '() (cons (vector-ref vec i) result)))
((= i end) result))))
;;; (REVERSE-LIST->VECTOR <list> -> vector
;;; Produce a vector containing the elements in LIST in reverse order.
(define (reverse-list->vector lst)
(unless (list? lst)
(raise-type-error 'reverse-list->vector "proper list" lst))
(let* ((len (length lst))
(vec (make-vector len)))
(unfold1! (lambda (index l) (values (car l) (cdr l)))
vec
(sub1 len)
lst)
vec)))

View File

@ -1,278 +0,0 @@
;;;
;;; <iteration.ss> ---- Vector iteration
;;; Time-stamp: <05/03/07 18:19:59 Zhu Chongkai>
;;;
;;; Copyright (C) 2005-2006 by Zhu Chongkai.
;;;
;;; This file is part of SRFI-43.
;;; SRFI-43 is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Lesser General Public
;;; License as published by the Free Software Foundation; either
;;; version 2.1 of the License, or (at your option) any later version.
;;; SRFI-43 is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with SRFI-43; if not, write to the Free Software
;;; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
;;; Author: Zhu Chongkai <mrmathematica@yahoo.com>
;;
;;
;; Commentary:
;; Based on the reference implementation by Taylor Campbell and hence:
;;; Copyright (C) 2003, 2004 Taylor Campbell.
;;; All rights reserved.
;;;
;;; You may do as you please with this code, as long as you refrain
;;; from removing this copyright notice or holding me liable in _any_
;;; circumstances for _any_ damages that may be caused by it; and you
;;; may quote sections from it as you please, as long as you credit me.
(module iteration mzscheme
(require "util.ss")
(provide vector-fold
vector-fold-right
vector-map
vector-map!
vector-for-each
vector-count)
;;; (VECTOR-FOLD <kons> <initial-knil> <vector> ...) -> knil
;;; (KONS <knil> <elt> ...) -> knil' ; N vectors -> N+1 args
;;; The fundamental vector iterator. KONS is iterated over each
;;; index in all of the vectors in parallel, stopping at the end of
;;; the shortest; KONS is applied to an argument list of (list I
;;; STATE (vector-ref VEC I) ...), where STATE is the current state
;;; value -- the state value begins with KNIL and becomes whatever
;;; KONS returned at the respective iteration --, and I is the
;;; current index in the iteration. The iteration is strictly left-
;;; to-right.
;;; (vector-fold KONS KNIL (vector E_1 E_2 ... E_N))
;;; <=>
;;; (KONS (... (KONS (KONS KNIL E_1) E_2) ... E_N-1) E_N)
(define (vector-fold kons knil vec . vectors)
(unless (procedure? kons)
(apply raise-type-error
'vector-fold "procedure" 0
kons knil vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-fold "vector" 2
kons knil vec vectors))
(if (null? vectors)
(%vector-fold1 kons knil (vector-length vec) vec)
(begin (check-list-of-vecs vectors 'vector-fold 3
(list* kons knil vec vectors))
(%vector-fold2+ kons knil
(%smallest-length vectors
(vector-length vec))
(cons vec vectors)))))
(define %vector-fold1
(letrec ((loop (lambda (kons knil len vec i)
(if (= i len)
knil
(loop kons
(kons i knil (vector-ref vec i))
len vec (add1 i))))))
(lambda (kons knil len vec)
(loop kons knil len vec 0))))
(define %vector-fold2+
(letrec ((loop (lambda (kons knil len vectors i)
(if (= i len)
knil
(loop kons
(apply kons i knil
(vectors-ref vectors i))
len vectors (add1 i))))))
(lambda (kons knil len vectors)
(loop kons knil len vectors 0))))
;;; (VECTOR-COUNT <predicate?> <vector> ...)
;;; -> exact, nonnegative integer
;;; (PREDICATE? <index> <value> ...) ; N vectors -> N+1 args
;;; PREDICATE? is applied element-wise to the elements of VECTOR ...,
;;; and a count is tallied of the number of elements for which a
;;; true value is produced by PREDICATE?. This count is returned.
(define (vector-count pred? vec . vectors)
(unless (procedure? pred?)
(apply raise-type-error
'vector-count "procedure" 0
pred? vec vectors))
(if (null? vectors)
(%vector-fold1 (lambda (index count elt)
(if (pred? index elt)
(add1 count)
count))
0
(vector-length vec)
vec)
(begin (check-list-of-vecs vectors 'vector-count 2
(list* pred? vec vectors))
(%vector-fold2+ (lambda (index count . elts)
(if (apply pred? index elts)
(add1 count)
count))
0
(%smallest-length vectors
(vector-length vec))
(cons vec vectors)))))
;;; (VECTOR-FOLD-RIGHT <kons> <initial-knil> <vector> ...) -> knil
;;; (KONS <knil> <elt> ...) -> knil' ; N vectors => N+1 args
;;; The fundamental vector recursor. Iterates in parallel across
;;; VECTOR ... right to left, applying KONS to the elements and the
;;; current state value; the state value becomes what KONS returns
;;; at each next iteration. KNIL is the initial state value.
;;; (vector-fold-right KONS KNIL (vector E_1 E_2 ... E_N))
;;; <=>
;;; (KONS (... (KONS (KONS KNIL E_N) E_N-1) ... E_2) E_1)
;;;
;;; Not implemented in terms of a more primitive operations that might
;;; called %VECTOR-FOLD-RIGHT due to the fact that it wouldn't be very
;;; useful elsewhere.
(define vector-fold-right
(letrec ((loop1 (lambda (kons knil vec i)
(if (zero? i)
knil
(let ((j (sub1 i)))
(loop1 kons
(kons j knil (vector-ref vec j))
vec
j)))))
(loop2+ (lambda (kons knil vectors i)
(if (zero? i)
knil
(let ((j (sub1 i)))
(loop2+ kons
(apply kons j knil
(vectors-ref vectors j))
vectors
j))))))
(lambda (kons knil vec . vectors)
(unless (procedure? kons)
(apply raise-type-error
'vector-fold-right "procedure" 0
kons knil vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-fold-right "vector" 2
kons knil vec vectors))
(if (null? vectors)
(loop1 kons knil vec (vector-length vec))
(begin (check-list-of-vecs vectors 'vector-fold-right 3
(list* kons knil vec vectors))
(loop2+ kons knil (cons vec vectors)
(%smallest-length vectors
(vector-length vec))))))))
;;; (VECTOR-MAP <f> <vector> ...) -> vector
;;; (F <elt> ...) -> value ; N vectors -> N args
;;; Constructs a new vector of the shortest length of the vector
;;; arguments. Each element at index I of the new vector is mapped
;;; from the old vectors by (F I (vector-ref VECTOR I) ...). The
;;; dynamic order of application of F is unspecified.
(define (vector-map f vec . vectors)
(unless (procedure? f)
(apply raise-type-error
'vector-map "procedure" 0
f vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-map "vector" 1
f vec vectors))
(if (null? vectors)
(let ((len (vector-length vec)))
(%vector-map1! f (make-vector len) vec len))
(begin (check-list-of-vecs vectors 'vector-map 2
(list* f vec vectors))
(let ((len (%smallest-length vectors
(vector-length vec))))
(%vector-map2+! f (make-vector len)
(cons vec vectors) len)))))
;;; (%VECTOR-MAP1! <f> <target> <length> <vector>)
;;; (F <index> <elt>) -> elt'
(define (%vector-map1! f target vec i)
(if (zero? i)
target
(let ((j (sub1 i)))
(vector-set! target j
(f j (vector-ref vec j)))
(%vector-map1! f target vec j))))
(define (%vector-map2+! f target vectors i)
(if (zero? i)
target
(let ((j (sub1 i)))
(vector-set! target j
(apply f j (vectors-ref vectors j)))
(%vector-map2+! f target vectors j))))
;;; (VECTOR-MAP! <f> <vector> ...) -> vector
;;; (F <elt> ...) -> element' ; N vectors -> N args
;;; Similar to VECTOR-MAP, but rather than mapping the new elements
;;; into a new vector, the new mapped elements are destructively
;;; inserted into the first vector. Again, the dynamic order of
;;; application of F is unspecified, so it is dangerous for F to
;;; manipulate the first VECTOR.
(define (vector-map! f vec . vectors)
(unless (procedure? f)
(apply raise-type-error
'vector-map! "procedure" 0
f vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-map! "vector" 1
f vec vectors))
(if (null? vectors)
(%vector-map1! f vec vec (vector-length vec))
(begin (check-list-of-vecs vectors 'vector-map! 2
(list* f vec vectors))
(%vector-map2+! f vec (cons vec vectors)
(%smallest-length vectors
(vector-length vec))))))
;;; (VECTOR-FOR-EACH <f> <vector> ...) -> void
;;; (F <elt> ...) ; N vectors -> N args
;;; Simple vector iterator: applies F to each index in the range [0,
;;; LENGTH), where LENGTH is the length of the smallest vector
;;; argument passed, and the respective element at that index. In
;;; contrast with VECTOR-MAP, F is reliably applied to each
;;; subsequent elements, starting at index 0 from left to right, in
;;; the vectors.
(define vector-for-each
(letrec ((for-each1
(lambda (f vec i len)
(when (< i len)
(f i (vector-ref vec i))
(for-each1 f vec (add1 i) len))))
(for-each2+
(lambda (f vecs i len)
(when (< i len)
(apply f i (vectors-ref vecs i))
(for-each2+ f vecs (add1 i) len)))))
(lambda (f vec . vectors)
(unless (procedure? f)
(apply raise-type-error
'vector-for-each "procedure" 0
f vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-for-each "vector" 1
f vec vectors))
(if (null? vectors)
(for-each1 f vec 0 (vector-length vec))
(begin (check-list-of-vecs vectors 'vector-for-each 2
(list* f vec vectors))
(for-each2+ f (cons vec vectors) 0
(%smallest-length vectors
(vector-length vec)))))))))

View File

@ -1,159 +0,0 @@
;;;
;;; <mutators.ss> ---- Vector mutators
;;; Time-stamp: <05/03/07 18:19:59 Zhu Chongkai>
;;;
;;; Copyright (C) 2005-2006 by Zhu Chongkai.
;;;
;;; This file is part of SRFI-43.
;;; SRFI-43 is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Lesser General Public
;;; License as published by the Free Software Foundation; either
;;; version 2.1 of the License, or (at your option) any later version.
;;; SRFI-43 is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with SRFI-43; if not, write to the Free Software
;;; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
;;; Author: Zhu Chongkai <mrmathematica@yahoo.com>
;;
;;
;; Commentary:
;; Based on the reference implementation by Taylor Campbell and hence:
;;; Copyright (C) 2003, 2004 Taylor Campbell.
;;; All rights reserved.
;;;
;;; You may do as you please with this code, as long as you refrain
;;; from removing this copyright notice or holding me liable in _any_
;;; circumstances for _any_ damages that may be caused by it; and you
;;; may quote sections from it as you please, as long as you credit me.
(module mutators mzscheme
(require "util.ss")
(provide vector-swap!
(rename my-vector-fill! vector-fill!)
vector-reverse!
vector-copy!
vector-reverse-copy!)
;;; (VECTOR-SWAP! <vector> <index1> <index2>) -> void
;;; Swap the values in the locations at INDEX1 and INDEX2.
(define (vector-swap! vec i j)
(unless (vector? vec)
(raise-type-error 'vector-swap! "vector" 0
vec i j))
(check-index vec i 'vector-swap!)
(check-index vec j 'vector-swap!)
(%vector-swap! vec i j))
(define (%vector-swap! vec i j)
(let ((x (vector-ref vec i)))
(vector-set! vec i (vector-ref vec j))
(vector-set! vec j x)))
;;; (VECTOR-FILL! <vector> <value> [<start> <end>]) -> <vector>
;;; [R5RS+] Fill the locations in VECTOR between START, whose default
;;; is 0, and END, whose default is the length of VECTOR, with VALUE.
;;;
;;; This one can probably be made really fast natively.
(define (my-vector-fill! vec value . maybe-start+end)
(cond ((null? maybe-start+end)
(vector-fill! vec value)) ;+++
((not (vector? vec))
(apply raise-type-error
'vector-fill! "vector" 0
vec value maybe-start+end))
(else
(let-values (((start end)
(check-indices vec maybe-start+end 'vector-fill!)))
(do ((i start (add1 i)))
((= i end))
(vector-set! vec i value))
vec))))
(define %vector-reverse!
(letrec ((loop (lambda (vec i j)
(when (< i j)
(%vector-swap! vec i j)
(loop vec (add1 i) (sub1 j))))))
(lambda (vec start end)
(loop vec start (sub1 end)))))
;;; (VECTOR-REVERSE! <vector> [<start> <end>]) -> void
;;; Destructively reverse the contents of the sequence of locations
;;; in VECTOR between START, whose default is 0, and END, whose
;;; default is the length of VECTOR.
(define (vector-reverse! vec . maybe-start+end)
(unless (vector? vec)
(apply raise-type-error
'vector-reverse! "vector" 0
vec maybe-start+end))
(let-values (((start end)
(check-indices vec maybe-start+end 'vector-reverse!)))
(%vector-reverse! vec start end)))
;;; (VECTOR-COPY! <target> <tstart> <source> [<sstart> <send>])
;;; -> unspecified
;;; Copy the values in the locations in [SSTART,SEND) from SOURCE to
;;; to TARGET, starting at TSTART in TARGET.
(define (vector-copy! target tstart source . maybe-sstart+send)
(unless (vector? target)
(apply raise-type-error
'vector-copy! "vector" 0
target tstart source maybe-sstart+send))
(check-index target tstart 'vector-copy!)
(unless (vector? source)
(apply raise-type-error
'vector-copy! "vector" 2
target tstart source maybe-sstart+send))
(let-values (((sstart send)
(check-indices source maybe-sstart+send 'vector-copy!)))
(if (< (- (vector-length target) tstart)
(- send sstart))
(error 'vector-copy!
"target vector not long enough to copy"))
(%vector-copy! target tstart source sstart send)))
;;; (VECTOR-REVERSE-COPY! <target> <tstart> <source> [<sstart> <send>])
(define (vector-reverse-copy! target tstart source . maybe-sstart+send)
(unless (vector? target)
(apply raise-type-error
'vector-reverse-copy! "vector" 0
target tstart source maybe-sstart+send))
(check-index target tstart 'vector-reverse-copy!)
(unless (vector? source)
(apply raise-type-error
'vector-reverse-copy! "vector" 2
target tstart source maybe-sstart+send))
(let-values (((sstart send)
(check-indices source maybe-sstart+send 'vector-reverse-copy!)))
(cond ((< (- (vector-length target) tstart)
(- send sstart))
(error 'vector-reverse-copy!
"target vector not long enough to copy"))
((and (eq? target source)
(= sstart tstart))
(%vector-reverse! target tstart send))
((and (eq? target source)
(or (between? sstart tstart send)
(between? tstart sstart
(+ tstart (- send sstart)))))
;an error in the reference implement here
(error 'vector-reverse-copy!
"Vector range for self-copying overlaps"))
(else
(%vector-reverse-copy! target tstart
source sstart send)))))
(define (between? x y z)
(and (< x y)
(<= y z))))

View File

@ -1,103 +0,0 @@
;;;
;;; <predicates.ss> ---- Vector predicates
;;; Time-stamp: <05/03/07 18:19:59 Zhu Chongkai>
;;;
;;; Copyright (C) 2005-2006 by Zhu Chongkai.
;;;
;;; This file is part of SRFI-43.
;;; SRFI-43 is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Lesser General Public
;;; License as published by the Free Software Foundation; either
;;; version 2.1 of the License, or (at your option) any later version.
;;; SRFI-43 is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with SRFI-43; if not, write to the Free Software
;;; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
;;; Author: Zhu Chongkai <mrmathematica@yahoo.com>
;;
;;
;; Commentary:
;; Based on the reference implementation by Taylor Campbell and hence:
;;; Copyright (C) 2003, 2004 Taylor Campbell.
;;; All rights reserved.
;;;
;;; You may do as you please with this code, as long as you refrain
;;; from removing this copyright notice or holding me liable in _any_
;;; circumstances for _any_ damages that may be caused by it; and you
;;; may quote sections from it as you please, as long as you credit me.
(module predicates mzscheme
(require "util.ss")
(provide vector-empty?
vector=)
;;; (VECTOR-EMPTY? <vector>) -> boolean
;;; Return #T if VECTOR has zero elements in it, i.e. VECTOR's length
;;; is 0, and #F if not.
(define (vector-empty? vec)
(unless (vector? vec)
(raise-type-error 'vector-empty? "vector" vec))
(zero? (vector-length vec)))
;;; (VECTOR= <elt=?> <vector> ...) -> boolean
;;; (ELT=? <value> <value>) -> boolean
;;; Determine vector equality generalized across element comparators.
;;; Vectors A and B are equal iff their lengths are the same and for
;;; each respective elements E_a and E_b (element=? E_a E_b) returns
;;; a true value. ELT=? is always applied to two arguments. Element
;;; comparison must be consistent wtih EQ?; that is, if (eq? E_a E_b)
;;; results in a true value, then (ELEMENT=? E_a E_b) must result in a
;;; true value. This may be exploited to avoid multiple unnecessary
;;; element comparisons. (This implementation does, but does not deal
;;; with the situation that ELEMENT=? is EQ? to avoid more unnecessary
;;; comparisons, but I believe this optimization is probably fairly
;;; insignificant.)
;;;
;;; If the number of vector arguments is zero or one, then #T is
;;; automatically returned. If there are N vector arguments,
;;; VECTOR_1 VECTOR_2 ... VECTOR_N, then VECTOR_1 & VECTOR_2 are
;;; compared; if they are equal, the vectors VECTOR_2 ... VECTOR_N
;;; are compared. The precise order in which ELT=? is applied is not
;;; specified.
(define (vector= elt=? . vectors)
(unless (procedure-arity-includes? elt=? 2)
(apply raise-type-error
'vector= "procedure of arity 2" 0
elt=? vectors))
(cond ((null? vectors)
#t)
((null? (cdr vectors))
(unless (vector? (car vectors))
(apply raise-type-error
'vector= "vector" 1
elt=? vectors))
#t)
(else
(check-list-of-vecs vectors 'vector=
1 (cons elt=? vectors))
(let loop ((vecs vectors))
(let ((vec1 (car vecs))
(vec2+ (cdr vecs)))
(or (null? vec2+)
(and (binary-vector= elt=? vec1 (car vec2+))
(loop vec2+))))))))
(define (binary-vector= elt=? vector-a vector-b)
(or (eq? vector-a vector-b) ;+++
(let ((length-a (vector-length vector-a)))
(and (= length-a (vector-length vector-b))
(let loop ((i 0))
(or (= i length-a)
(and (elt=? (vector-ref vector-a i)
(vector-ref vector-b i))
(loop (add1 i))))))))))

View File

@ -1,298 +0,0 @@
;;;
;;; <searching.ss> ---- Vector searching
;;; Time-stamp: <05/03/07 18:19:59 Zhu Chongkai>
;;;
;;; Copyright (C) 2005-2006 by Zhu Chongkai.
;;;
;;; This file is part of SRFI-43.
;;; SRFI-43 is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Lesser General Public
;;; License as published by the Free Software Foundation; either
;;; version 2.1 of the License, or (at your option) any later version.
;;; SRFI-43 is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with SRFI-43; if not, write to the Free Software
;;; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
;;; Author: Zhu Chongkai <mrmathematica@yahoo.com>
;;
;;
;; Commentary:
;; Based on the reference implementation by Taylor Campbell and hence:
;;; Copyright (C) 2003, 2004 Taylor Campbell.
;;; All rights reserved.
;;;
;;; You may do as you please with this code, as long as you refrain
;;; from removing this copyright notice or holding me liable in _any_
;;; circumstances for _any_ damages that may be caused by it; and you
;;; may quote sections from it as you please, as long as you credit me.
(module searching mzscheme
(require "util.ss")
(provide vector-index
vector-index-right
vector-skip
vector-skip-right
vector-binary-search
vector-any
vector-every)
;; All the functions (except vector-binary-search) here can be
;; abstracted, but for performance I didn't do so.
;;; (VECTOR-INDEX <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; Search left-to-right across VECTOR ... in parallel, returning the
;;; index of the first set of values VALUE ... such that (PREDICATE?
;;; VALUE ...) returns a true value; if no such set of elements is
;;; reached, return #F.
(define vector-index
(letrec ((loop1 (lambda (pred? vec len i)
(cond ((= i len) #f)
((pred? (vector-ref vec i)) i)
(else (loop1 pred? vec len (add1 i))))))
(loop2+ (lambda (pred? vectors len i)
(cond ((= i len) #f)
((apply pred? (vectors-ref vectors i)) i)
(else (loop2+ pred? vectors len (add1 i)))))))
(lambda (pred? vec . vectors)
(unless (procedure? pred?)
(apply raise-type-error
'vector-index "procedure" 0
pred? vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-index "vector" 1
pred? vec vectors))
(if (null? vectors)
(loop1 pred? vec (vector-length vec) 0)
(begin (check-list-of-vecs vectors 'vector-index 2
(list* pred? vec vectors))
(loop2+ pred? (cons vec vectors)
(%smallest-length vectors
(vector-length vec))
0))))))
;;; (VECTOR-SKIP <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; (vector-index (lambda elts (not (apply PREDICATE? elts)))
;;; VECTOR ...)
;;; Like VECTOR-INDEX, but find the index of the first set of values
;;; that do _not_ satisfy PREDICATE?.
(define vector-skip
(letrec ((loop1 (lambda (pred? vec len i)
(cond ((= i len) #f)
((pred? (vector-ref vec i))
(loop1 pred? vec len (add1 i)))
(else i))))
(loop2+ (lambda (pred? vectors len i)
(cond ((= i len) #f)
((apply pred? (vectors-ref vectors i))
(loop2+ pred? vectors len (add1 i)))
(else i)))))
(lambda (pred? vec . vectors)
(unless (procedure? pred?)
(apply raise-type-error
'vector-skip "procedure" 0
pred? vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-skip "vector" 1
pred? vec vectors))
(if (null? vectors)
(loop1 pred? vec (vector-length vec) 0)
(begin (check-list-of-vecs vectors 'vector-skip 2
(list* pred? vec vectors))
(loop2+ pred? (cons vec vectors)
(%smallest-length vectors
(vector-length vec))
0))))))
;;; (VECTOR-INDEX-RIGHT <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; Right-to-left variant of VECTOR-INDEX.
(define vector-index-right
(letrec ((loop1 (lambda (pred? vec i)
(if (zero? i)
#f
(let ((i (sub1 i)))
(if (pred? (vector-ref vec i))
i
(loop1 pred? vec i))))))
(loop2+ (lambda (pred? vectors i)
(if (zero? i)
#f
(let ((i (sub1 i)))
(if (apply pred? (vectors-ref vectors i))
i
(loop2+ pred? vectors i)))))))
(lambda (pred? vec . vectors)
(unless (procedure? pred?)
(apply raise-type-error
'vector-index-right "procedure" 0
pred? vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-index-right "vector" 1
pred? vec vectors))
(if (null? vectors)
(loop1 pred? vec (vector-length vec))
(begin (check-list-of-vecs vectors 'vector-index-right 2
(list* pred? vec vectors))
(loop2+ pred? (cons vec vectors)
(%smallest-length vectors
(vector-length vec))))))))
;;; (VECTOR-SKIP-RIGHT <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; Right-to-left variant of VECTOR-SKIP.
(define vector-skip-right
(letrec ((loop1 (lambda (pred? vec i)
(if (zero? i)
#f
(let ((i (sub1 i)))
(if (pred? (vector-ref vec i))
(loop1 pred? vec i)
i)))))
(loop2+ (lambda (pred? vectors i)
(if (zero? i)
#f
(let ((i (sub1 i)))
(if (apply pred? (vectors-ref vectors i))
(loop2+ pred? vectors i)
i))))))
(lambda (pred? vec . vectors)
(unless (procedure? pred?)
(apply raise-type-error
'vector-skip-right "procedure" 0
pred? vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-skip-right "vector" 1
pred? vec vectors))
(if (null? vectors)
(loop1 pred? vec (vector-length vec))
(begin (check-list-of-vecs vectors 'vector-skip-right 2
(list* pred? vec vectors))
(loop2+ pred? (cons vec vectors)
(%smallest-length vectors
(vector-length vec))))))))
;;; (VECTOR-BINARY-SEARCH <vector> <value> <cmp>)
;;; -> exact, nonnegative integer or #F
;;; (CMP <value1> <value2>) -> integer
;;; positive -> VALUE1 > VALUE2
;;; zero -> VALUE1 = VALUE2
;;; negative -> VALUE1 < VALUE2
;;; Perform a binary search through VECTOR for VALUE, comparing each
;;; element to VALUE with CMP.
(define (vector-binary-search vec value cmp)
(unless (vector? vec)
(raise-type-error 'vector-binary-search "vector" 0
vec value cmp))
(unless (procedure-arity-includes? cmp 2)
(raise-type-error 'vector-binary-search "procedure of arity 2" 2
vec value cmp))
(let loop ((start 0)
(end (vector-length vec))
(j -1))
(let ((i (quotient (+ start end) 2)))
(if (= i j)
#f
(let ((comparison (cmp (vector-ref vec i) value)))
(unless (integer? comparison)
(raise-type-error 'vector-binary-search
"procedure that returns an integer"
2
vec value cmp))
(cond ((zero? comparison) i)
((positive? comparison) (loop start i i))
(else (loop i end i))))))))
;;; (VECTOR-ANY <pred?> <vector> ...) -> value
;;; Apply PRED? to each parallel element in each VECTOR ...; if PRED?
;;; should ever return a true value, immediately stop and return that
;;; value; otherwise, when the shortest vector runs out, return #F.
;;; The iteration and order of application of PRED? across elements
;;; is of the vectors is strictly left-to-right.
(define vector-any
(letrec ((loop1 (lambda (pred? vec i len)
(and (not (= i len))
(or (pred? (vector-ref vec i))
(loop1 pred? vec (add1 i) len)))))
(loop2+ (lambda (pred? vectors i len)
(and (not (= i len))
(or (apply pred? (vectors-ref vectors i))
(loop2+ pred? vectors (add1 i) len))))))
(lambda (pred? vec . vectors)
(unless (procedure? pred?)
(apply raise-type-error
'vector-any "procedure" 0
pred? vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-any "vector" 1
pred? vec vectors))
(if (null? vectors)
(loop1 pred? vec 0 (vector-length vec))
(begin (check-list-of-vecs vectors 'vector-any 2
(list* pred? vec vectors))
(loop2+ pred? (cons vec vectors)
0 (%smallest-length vectors
(vector-length vec))))))))
;;; (VECTOR-EVERY <pred?> <vector> ...) -> value
;;; Apply PRED? to each parallel value in each VECTOR ...; if PRED?
;;; should ever return #F, immediately stop and return #F; otherwise,
;;; if PRED? should return a true value for each element, stopping at
;;; the end of the shortest vector, return the last value that PRED?
;;; returned. In the case that there is an empty vector, return #T.
;;; The iteration and order of application of PRED? across elements
;;; is of the vectors is strictly left-to-right.
(define vector-every
(letrec ((loop1 (lambda (pred? vec i len)
(or (> i len)
(if (= i len)
(pred? (vector-ref vec i))
(and (pred? (vector-ref vec i))
(loop1 pred? vec (add1 i) len))))))
(loop2+ (lambda (pred? vectors i len)
(or (> i len)
(if (= i len)
(apply pred? (vectors-ref vectors i))
(and (apply pred? (vectors-ref vectors i))
(loop2+ pred? vectors (add1 i) len)))))))
(lambda (pred? vec . vectors)
(unless (procedure? pred?)
(apply raise-type-error
'vector-every "procedure" 0
pred? vec vectors))
(unless (vector? vec)
(apply raise-type-error
'vector-every "vector" 1
pred? vec vectors))
(if (null? vectors)
(loop1 pred? vec 0 (sub1 (vector-length vec)))
(begin (check-list-of-vecs vectors 'vector-every 2
(list* pred? vec vectors))
(loop2+ pred?
(cons vec vectors)
0
(sub1
(%smallest-length vectors
(vector-length vec))))))))))

View File

@ -1,163 +0,0 @@
;;;
;;; <util.ss> ---- Utility functions
;;; Time-stamp: <05/03/07 18:19:59 Zhu Chongkai>
;;;
;;; Copyright (C) 2005-2006 by Zhu Chongkai.
;;;
;;; This file is part of SRFI-43.
;;; SRFI-43 is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Lesser General Public
;;; License as published by the Free Software Foundation; either
;;; version 2.1 of the License, or (at your option) any later version.
;;; SRFI-43 is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with SRFI-43; if not, write to the Free Software
;;; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
;;; Author: Zhu Chongkai <mrmathematica@yahoo.com>
;;
;;
;; Commentary:
;; Based on the reference implementation by Taylor Campbell and hence:
;;; Copyright (C) 2003, 2004 Taylor Campbell.
;;; All rights reserved.
;;;
;;; You may do as you please with this code, as long as you refrain
;;; from removing this copyright notice or holding me liable in _any_
;;; circumstances for _any_ damages that may be caused by it; and you
;;; may quote sections from it as you please, as long as you credit me.
(module util mzscheme
(require (lib "etc.ss" "mzlib")
(lib "receive.ss" "srfi" "8"))
(provide (all-defined))
;;; (CHECK-INDEX <vector> <index> <callee>) ->
;;; Ensure that INDEX is a valid index into VECTOR; if not, signal an
;;; error stating that it is not and that this happened in a call to
;;; CALLEE. (Note that this does NOT check that VECTOR is indeed a
;;; vector.)
(define (check-index vec index callee)
(unless (nonneg-int? index)
(raise-type-error callee "non-negative exact integer" index))
(unless (and (<= 0 index)
(< index (vector-length vec)))
(raise
(make-exn:fail:contract
(format "~a: index ~a out of range for vector: ~a"
callee index vec)
(current-continuation-marks)))))
(define (check-indices vec maybe-start+end callee)
(if (null? maybe-start+end)
(values 0 (vector-length vec))
(let ((start (car maybe-start+end)))
(unless (nonneg-int? start)
(raise-type-error callee "non-negative exact integer" start))
(unless (<= 0 start (vector-length vec))
(raise
(make-exn:fail:contract
(format "~a: index ~a out of range for vector: ~a"
callee start vec)
(current-continuation-marks))))
(if (null? (cdr maybe-start+end))
(values start (vector-length vec))
(let ((end (cadr maybe-start+end)))
(unless (nonneg-int? end)
(raise-type-error callee "non-negative exact integer" end))
(unless (<= start end (vector-length vec))
(raise
(make-exn:fail:contract
(format "~a: indices (~a, ~a) out of range for vector: ~a"
callee start end vec))))
(values start end))))))
(define (nonneg-int? x)
(and (integer? x)
(exact? x)
(not (negative? x))))
;;; (%VECTOR-COPY! <target> <tstart> <source> <sstart> <send>)
;;; Copy elements at locations SSTART to SEND from SOURCE to TARGET,
;;; starting at TSTART in TARGET.
(define %vector-copy!
(letrec ((loop/l->r (lambda (target source send i j)
(cond ((< i send)
(vector-set! target j
(vector-ref source i))
(loop/l->r target source send
(add1 i) (add1 j))))))
(loop/r->l (lambda (target source sstart i j)
(cond ((>= i sstart)
(vector-set! target j
(vector-ref source i))
(loop/r->l target source sstart
(sub1 i) (sub1 j)))))))
(lambda (target tstart source sstart send)
(if (> sstart tstart) ; Make sure we don't copy over
; ourselves.
(loop/l->r target source send sstart tstart)
(loop/r->l target source sstart (sub1 send)
(+ -1 tstart send (- sstart)))))))
;;; (%VECTOR-REVERSE-COPY! <target> <tstart> <source> <sstart> <send>)
;;; Copy elements from SSTART to SEND from SOURCE to TARGET, in the
;;; reverse order.
(define %vector-reverse-copy!
(letrec ((loop (lambda (target source sstart i j)
(cond ((>= i sstart)
(vector-set! target j (vector-ref source i))
(loop target source sstart
(sub1 i)
(add1 j)))))))
(lambda (target tstart source sstart send)
(loop target source sstart
(sub1 send)
tstart))))
;; type-check : check whether list-of-vecs is list of VECTORs
(define check-list-of-vecs
(opt-lambda (list-of-vecs caller (n 0) (all-args list-of-vecs))
(let loop ((l list-of-vecs)
(i 0))
(unless (null? l)
(if (vector? (car l))
(loop (cdr l) (add1 i))
(apply raise-type-error
caller "vector"
(+ n i)
all-args))))))
;;; (%SMALLEST-LENGTH <vector-list> <default-length>)
;;; -> exact, nonnegative integer
;;; Compute the smallest length of VECTOR-LIST. DEFAULT-LENGTH is
;;; the length that is returned if VECTOR-LIST is empty. Common use
;;; of this is in n-ary vector routines:
;;; (define (f vec . vectors)
(define (%smallest-length vector-list length)
(if (null? vector-list)
length
(%smallest-length (cdr vector-list)
(min length
(vector-length (car vector-list))))))
(define (vectors-ref vectors i)
(map (lambda (v) (vector-ref v i)) vectors))
;;; from vector-unfold-right
(define (unfold1! f vec i seed)
(if (>= i 0)
(receive (elt new-seed)
(f i seed)
(vector-set! vec i elt)
(unfold1! f vec (sub1 i) new-seed)))))

View File

@ -1,43 +1,846 @@
;;;
;;; <util.ss> ---- Utility functions
;;; Time-stamp: <05/03/07 18:21:41 Zhu Chongkai>
;;;
;;; Copyright (C) 2005-2006 by Zhu Chongkai.
;;;
;;; This file is part of SRFI-43.
;;; SRFI-43 is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Lesser General Public
;;; License as published by the Free Software Foundation; either
;;; version 2.1 of the License, or (at your option) any later version.
;;; SRFI-43 is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with SRFI-43; if not, write to the Free Software
;;; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
;;; Author: Zhu Chongkai <mrmathematica@yahoo.com>
;;
;;; Copyright (C) 2005-2007 by Chongkai Zhu.
(module vector-lib mzscheme
(require (lib "receive.ss" "srfi" "8")
(lib "etc.ss" "mzlib")
(lib "contract.ss"))
(define (nonneg-int? x)
(and (integer? x)
(exact? x)
(not (negative? x))))
(define mutable-vector/c
(and/c vector? (not/c immutable?)))
(define (vec-start-end-contract vector?)
(case->
(-> vector? any)
(->r ((vec vector?)
(start (and/c nonneg-int?
(<=/c (vector-length vec)))))
any)
(->pp ((vec vector?)
(start nonneg-int?)
(end nonneg-int?))
(<= start end (vector-length vec))
any)))
;;; (%SMALLEST-LENGTH <vector-list> <default-length>)
;;; -> exact, nonnegative integer
;;; Compute the smallest length of VECTOR-LIST. DEFAULT-LENGTH is
;;; the length that is returned if VECTOR-LIST is empty. Common use
;;; of this is in n-ary vector routines:
;;; (define (f vec . vectors)
(define (%smallest-length vector-list length)
(if (null? vector-list)
length
(%smallest-length (cdr vector-list)
(min length
(vector-length (car vector-list))))))
(define (vectors-ref vectors i)
(map (lambda (v) (vector-ref v i)) vectors))
;;; from vector-unfold-right
(define (unfold1! f vec i seed)
(if (>= i 0)
(receive (elt new-seed)
(f i seed)
(vector-set! vec i elt)
(unfold1! f vec (sub1 i) new-seed))))
(require "constructors.ss"
"predicates.ss"
"iteration.ss"
"searching.ss"
(all-except "mutators.ss" vector-fill!)
(rename "mutators.ss" s:vector-fill! vector-fill!)
(all-except "conversion.ss" vector->list)
(rename "conversion.ss" s:vector->list vector->list))
(provide
(all-from "constructors.ss")
(all-from "predicates.ss")
(all-from "iteration.ss")
(all-from "searching.ss")
(all-from "mutators.ss")
(all-from "conversion.ss")))
(define unfold-contract
(->r ((f (lambda (f)
(and (procedure? f)
(procedure-arity-includes? f (add1 (length seeds))))))
(len nonneg-int?))
seeds list?
any))
(define copy-contract
(case->
(-> vector? any)
(->r ((vec vector?)
(start (and/c nonneg-int?
(<=/c (vector-length vec)))))
any)
(->r ((vec vector?)
(start (and/c nonneg-int?
(<=/c (vector-length vec))))
(end (and/c nonneg-int?
(>=/c start))))
any)
(->r ((vec vector?)
(start (and/c nonneg-int?
(<=/c (vector-length vec))))
(end (and/c nonneg-int?
(>=/c start)))
(fill any/c))
any)))
(provide/contract (vector-unfold unfold-contract)
(vector-unfold-right unfold-contract)
(vector-copy copy-contract)
(vector-reverse-copy (vec-start-end-contract vector?))
(vector-append (->* () (listof vector?) any))
(vector-concatenate (-> (listof vector?) any)))
;;; (VECTOR-UNFOLD <f> <length> <initial-seed> ...) -> vector
;;; (F <index> <seed> ...) -> [elt seed' ...]
;;; The fundamental vector constructor. Creates a vector whose
;;; length is LENGTH and iterates across each index K between 0 and
;;; LENGTH, applying F at each iteration to the current index and the
;;; current seeds to receive N+1 values: first, the element to put in
;;; the Kth slot and then N new seeds for the next iteration.
(define vector-unfold
(letrec ((tabulate! ; Special zero-seed case.
(lambda (f vec i len)
(cond ((< i len)
(vector-set! vec i (f i))
(tabulate! f vec (add1 i) len)))))
(unfold1! ; Fast path for one seed.
(lambda (f vec i len seed)
(if (< i len)
(receive (elt new-seed)
(f i seed)
(vector-set! vec i elt)
(unfold1! f vec (add1 i) len new-seed)))))
(unfold2+! ; Slower variant for N seeds.
(lambda (f vec i len seeds)
(if (< i len)
(receive (elt . new-seeds)
(apply f i seeds)
(vector-set! vec i elt)
(unfold2+! f vec (add1 i) len new-seeds))))))
(lambda (f len . initial-seeds)
(let ((vec (make-vector len)))
(cond ((null? initial-seeds)
(tabulate! f vec 0 len))
((null? (cdr initial-seeds))
(unfold1! f vec 0 len (car initial-seeds)))
(else
(unfold2+! f vec 0 len initial-seeds)))
vec))))
;;; (VECTOR-UNFOLD-RIGHT <f> <length> <initial-seed> ...) -> vector
;;; (F <seed> ...) -> [seed' ...]
;;; Like VECTOR-UNFOLD, but it generates elements from LENGTH to 0
;;; (still exclusive with LENGTH and inclusive with 0), not 0 to
;;; LENGTH as with VECTOR-UNFOLD.
(define vector-unfold-right
(letrec ((tabulate!
(lambda (f vec i)
(cond ((>= i 0)
(vector-set! vec i (f i))
(tabulate! f vec (sub1 i))))))
(unfold2+!
(lambda (f vec i seeds)
(if (>= i 0)
(receive (elt . new-seeds)
(apply f i seeds)
(vector-set! vec i elt)
(unfold2+! f vec (sub1 i) new-seeds))))))
(lambda (f len . initial-seeds)
(let ((vec (make-vector len))
(i (sub1 len)))
(cond ((null? initial-seeds)
(tabulate! f vec i))
((null? (cdr initial-seeds))
(unfold1! f vec i (car initial-seeds)))
(else
(unfold2+! f vec i initial-seeds)))
vec))))
;;; (VECTOR-COPY <vector> [<start> <end> <fill>]) -> vector
;;; Create a newly allocated vector containing the elements from the
;;; range [START,END) in VECTOR. START defaults to 0; END defaults
;;; to the length of VECTOR. END may be greater than the length of
;;; VECTOR, in which case the vector is enlarged; if FILL is passed,
;;; the new locations from which there is no respective element in
;;; VECTOR are filled with FILL.
(define vector-copy
(opt-lambda (vec (start 0) (end (vector-length vec)) (fill 0))
(let ((new-vector
(make-vector (- end start) fill)))
(vector-copy! new-vector 0
vec start
(min end (vector-length vec)))
new-vector)))
;;; (VECTOR-REVERSE-COPY <vector> [<start> <end>]) -> vector
;;; Create a newly allocated vector whose elements are the reversed
;;; sequence of elements between START and END in VECTOR. START's
;;; default is 0; END's default is the length of VECTOR.
(define vector-reverse-copy
(opt-lambda (vec (start 0) (end (vector-length vec)))
(let ((new (make-vector (- end start))))
(vector-reverse-copy! new 0 vec start end)
new)))
;;; (VECTOR-APPEND <vector> ...) -> vector
;;; Append VECTOR ... into a newly allocated vector and return that
;;; new vector.
(define (vector-append . vectors)
(vector-concatenate vectors))
;;; (VECTOR-CONCATENATE <vector-list>) -> vector
;;; Concatenate the vectors in VECTOR-LIST. This is equivalent to
;;; (apply vector-append VECTOR-LIST)
;;; Actually, they're both implemented in terms of an internal routine.
(define vector-concatenate
(letrec ((compute-length
(lambda (vectors len)
(if (null? vectors)
len
(let ((vec (car vectors)))
(compute-length (cdr vectors)
(+ (vector-length vec) len))))))
(concatenate!
(lambda (vectors target to)
(if (null? vectors)
target
(let* ((vec1 (car vectors))
(len (vector-length vec1)))
(vector-copy! target to vec1 0 len)
(concatenate! (cdr vectors) target
(+ to len)))))))
(lambda (vectors)
(let ((new-vector
(make-vector (compute-length vectors 0))))
(concatenate! vectors new-vector 0)
new-vector))))
(provide/contract (vector-empty?
(-> vector? any))
(vector=
(->* ((-> any/c any/c any))
(listof vector?)
any)))
;;; (VECTOR-EMPTY? <vector>) -> boolean
;;; Return #T if VECTOR has zero elements in it, i.e. VECTOR's length
;;; is 0, and #F if not.
(define (vector-empty? vec)
(zero? (vector-length vec)))
;;; (VECTOR= <elt=?> <vector> ...) -> boolean
;;; (ELT=? <value> <value>) -> boolean
;;; Determine vector equality generalized across element comparators.
;;; Vectors A and B are equal iff their lengths are the same and for
;;; each respective elements E_a and E_b (element=? E_a E_b) returns
;;; a true value. ELT=? is always applied to two arguments. Element
;;; comparison must be consistent wtih EQ?; that is, if (eq? E_a E_b)
;;; results in a true value, then (ELEMENT=? E_a E_b) must result in a
;;; true value. This may be exploited to avoid multiple unnecessary
;;; element comparisons. (This implementation does, but does not deal
;;; with the situation that ELEMENT=? is EQ? to avoid more unnecessary
;;; comparisons, but I believe this optimization is probably fairly
;;; insignificant.)
;;;
;;; If the number of vector arguments is zero or one, then #T is
;;; automatically returned. If there are N vector arguments,
;;; VECTOR_1 VECTOR_2 ... VECTOR_N, then VECTOR_1 & VECTOR_2 are
;;; compared; if they are equal, the vectors VECTOR_2 ... VECTOR_N
;;; are compared. The precise order in which ELT=? is applied is not
;;; specified.
(define (vector= elt=? . vectors)
(or (null? vectors)
(null? (cdr vectors))
(let loop ((vecs vectors))
(let ((vec1 (car vecs))
(vec2+ (cdr vecs)))
(or (null? vec2+)
(and (binary-vector= elt=? vec1 (car vec2+))
(loop vec2+)))))))
(define (binary-vector= elt=? vector-a vector-b)
(or (eq? vector-a vector-b) ;+++
(let ((length-a (vector-length vector-a)))
(and (= length-a (vector-length vector-b))
(let loop ((i 0))
(or (= i length-a)
(and (elt=? (vector-ref vector-a i)
(vector-ref vector-b i))
(loop (add1 i)))))))))
(define fold-contract
(->r ((kons (lambda (f)
(and (procedure? f)
(procedure-arity-includes? f (+ 3 (length vec))))))
(knil any/c)
(vec1 vector?))
vec (listof vector?)
any))
(define (map-contract m)
(->r ((f (lambda (f)
(and (procedure? f)
(procedure-arity-includes? f (+ 2 (length vec))))))
(vec1 m))
vec (listof vector?)
any))
(provide/contract (vector-fold fold-contract)
(vector-fold-right fold-contract)
(vector-map (map-contract vector?))
(vector-map! (map-contract mutable-vector/c))
(vector-for-each (map-contract vector?))
(vector-count (map-contract vector?)))
;;; (VECTOR-FOLD <kons> <initial-knil> <vector> ...) -> knil
;;; (KONS <knil> <elt> ...) -> knil' ; N vectors -> N+1 args
;;; The fundamental vector iterator. KONS is iterated over each
;;; index in all of the vectors in parallel, stopping at the end of
;;; the shortest; KONS is applied to an argument list of (list I
;;; STATE (vector-ref VEC I) ...), where STATE is the current state
;;; value -- the state value begins with KNIL and becomes whatever
;;; KONS returned at the respective iteration --, and I is the
;;; current index in the iteration. The iteration is strictly left-
;;; to-right.
;;; (vector-fold KONS KNIL (vector E_1 E_2 ... E_N))
;;; <=>
;;; (KONS (... (KONS (KONS KNIL E_1) E_2) ... E_N-1) E_N)
(define (vector-fold kons knil vec . vectors)
(if (null? vectors)
(%vector-fold1 kons knil (vector-length vec) vec)
(%vector-fold2+ kons knil
(%smallest-length vectors
(vector-length vec))
(cons vec vectors))))
(define %vector-fold1
(letrec ((loop (lambda (kons knil len vec i)
(if (= i len)
knil
(loop kons
(kons i knil (vector-ref vec i))
len vec (add1 i))))))
(lambda (kons knil len vec)
(loop kons knil len vec 0))))
(define %vector-fold2+
(letrec ((loop (lambda (kons knil len vectors i)
(if (= i len)
knil
(loop kons
(apply kons i knil
(vectors-ref vectors i))
len vectors (add1 i))))))
(lambda (kons knil len vectors)
(loop kons knil len vectors 0))))
;;; (VECTOR-COUNT <predicate?> <vector> ...)
;;; -> exact, nonnegative integer
;;; (PREDICATE? <index> <value> ...) ; N vectors -> N+1 args
;;; PREDICATE? is applied element-wise to the elements of VECTOR ...,
;;; and a count is tallied of the number of elements for which a
;;; true value is produced by PREDICATE?. This count is returned.
(define (vector-count pred? vec . vectors)
(if (null? vectors)
(%vector-fold1 (lambda (index count elt)
(if (pred? index elt)
(add1 count)
count))
0
(vector-length vec)
vec)
(%vector-fold2+ (lambda (index count . elts)
(if (apply pred? index elts)
(add1 count)
count))
0
(%smallest-length vectors
(vector-length vec))
(cons vec vectors))))
;;; (VECTOR-FOLD-RIGHT <kons> <initial-knil> <vector> ...) -> knil
;;; (KONS <knil> <elt> ...) -> knil' ; N vectors => N+1 args
;;; The fundamental vector recursor. Iterates in parallel across
;;; VECTOR ... right to left, applying KONS to the elements and the
;;; current state value; the state value becomes what KONS returns
;;; at each next iteration. KNIL is the initial state value.
;;; (vector-fold-right KONS KNIL (vector E_1 E_2 ... E_N))
;;; <=>
;;; (KONS (... (KONS (KONS KNIL E_N) E_N-1) ... E_2) E_1)
;;;
;;; Not implemented in terms of a more primitive operations that might
;;; called %VECTOR-FOLD-RIGHT due to the fact that it wouldn't be very
;;; useful elsewhere.
(define vector-fold-right
(letrec ((loop1 (lambda (kons knil vec i)
(if (zero? i)
knil
(let ((j (sub1 i)))
(loop1 kons
(kons j knil (vector-ref vec j))
vec
j)))))
(loop2+ (lambda (kons knil vectors i)
(if (zero? i)
knil
(let ((j (sub1 i)))
(loop2+ kons
(apply kons j knil
(vectors-ref vectors j))
vectors
j))))))
(lambda (kons knil vec . vectors)
(if (null? vectors)
(loop1 kons knil vec (vector-length vec))
(loop2+ kons knil (cons vec vectors)
(%smallest-length vectors
(vector-length vec)))))))
;;; (VECTOR-MAP <f> <vector> ...) -> vector
;;; (F <elt> ...) -> value ; N vectors -> N args
;;; Constructs a new vector of the shortest length of the vector
;;; arguments. Each element at index I of the new vector is mapped
;;; from the old vectors by (F I (vector-ref VECTOR I) ...). The
;;; dynamic order of application of F is unspecified.
(define (vector-map f vec . vectors)
(if (null? vectors)
(let ((len (vector-length vec)))
(%vector-map1! f (make-vector len) vec len))
(let ((len (%smallest-length vectors
(vector-length vec))))
(%vector-map2+! f (make-vector len)
(cons vec vectors) len))))
;;; (%VECTOR-MAP1! <f> <target> <length> <vector>)
;;; (F <index> <elt>) -> elt'
(define (%vector-map1! f target vec i)
(if (zero? i)
target
(let ((j (sub1 i)))
(vector-set! target j
(f j (vector-ref vec j)))
(%vector-map1! f target vec j))))
(define (%vector-map2+! f target vectors i)
(if (zero? i)
target
(let ((j (sub1 i)))
(vector-set! target j
(apply f j (vectors-ref vectors j)))
(%vector-map2+! f target vectors j))))
;;; (VECTOR-MAP! <f> <vector> ...) -> vector
;;; (F <elt> ...) -> element' ; N vectors -> N args
;;; Similar to VECTOR-MAP, but rather than mapping the new elements
;;; into a new vector, the new mapped elements are destructively
;;; inserted into the first vector. Again, the dynamic order of
;;; application of F is unspecified, so it is dangerous for F to
;;; manipulate the first VECTOR.
(define (vector-map! f vec . vectors)
(if (null? vectors)
(%vector-map1! f vec vec (vector-length vec))
(%vector-map2+! f vec (cons vec vectors)
(%smallest-length vectors
(vector-length vec)))))
;;; (VECTOR-FOR-EACH <f> <vector> ...) -> void
;;; (F <elt> ...) ; N vectors -> N args
;;; Simple vector iterator: applies F to each index in the range [0,
;;; LENGTH), where LENGTH is the length of the smallest vector
;;; argument passed, and the respective element at that index. In
;;; contrast with VECTOR-MAP, F is reliably applied to each
;;; subsequent elements, starting at index 0 from left to right, in
;;; the vectors.
(define vector-for-each
(letrec ((for-each1
(lambda (f vec i len)
(when (< i len)
(f i (vector-ref vec i))
(for-each1 f vec (add1 i) len))))
(for-each2+
(lambda (f vecs i len)
(when (< i len)
(apply f i (vectors-ref vecs i))
(for-each2+ f vecs (add1 i) len)))))
(lambda (f vec . vectors)
(if (null? vectors)
(for-each1 f vec 0 (vector-length vec))
(for-each2+ f (cons vec vectors) 0
(%smallest-length vectors
(vector-length vec)))))))
(define index-contract
(->r ((f (lambda (f)
(and (procedure? f)
(procedure-arity-includes? f (add1 (length vec))))))
(vec1 vector?))
vec (listof vector?)
any))
(provide/contract (vector-index index-contract)
(vector-index-right index-contract)
(vector-skip index-contract)
(vector-skip-right index-contract)
(vector-binary-search
(-> vector? any/c
(-> any/c any/c real?)
any))
(vector-any index-contract)
(vector-every index-contract))
;; All the functions (except vector-binary-search) here can be
;; abstracted, but for performance I didn't do so.
;;; (VECTOR-INDEX <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; Search left-to-right across VECTOR ... in parallel, returning the
;;; index of the first set of values VALUE ... such that (PREDICATE?
;;; VALUE ...) returns a true value; if no such set of elements is
;;; reached, return #F.
(define vector-index
(letrec ((loop1 (lambda (pred? vec len i)
(cond ((= i len) #f)
((pred? (vector-ref vec i)) i)
(else (loop1 pred? vec len (add1 i))))))
(loop2+ (lambda (pred? vectors len i)
(cond ((= i len) #f)
((apply pred? (vectors-ref vectors i)) i)
(else (loop2+ pred? vectors len (add1 i)))))))
(lambda (pred? vec . vectors)
(if (null? vectors)
(loop1 pred? vec (vector-length vec) 0)
(loop2+ pred? (cons vec vectors)
(%smallest-length vectors
(vector-length vec))
0)))))
;;; (VECTOR-SKIP <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; (vector-index (lambda elts (not (apply PREDICATE? elts)))
;;; VECTOR ...)
;;; Like VECTOR-INDEX, but find the index of the first set of values
;;; that do _not_ satisfy PREDICATE?.
(define vector-skip
(letrec ((loop1 (lambda (pred? vec len i)
(cond ((= i len) #f)
((pred? (vector-ref vec i))
(loop1 pred? vec len (add1 i)))
(else i))))
(loop2+ (lambda (pred? vectors len i)
(cond ((= i len) #f)
((apply pred? (vectors-ref vectors i))
(loop2+ pred? vectors len (add1 i)))
(else i)))))
(lambda (pred? vec . vectors)
(if (null? vectors)
(loop1 pred? vec (vector-length vec) 0)
(loop2+ pred? (cons vec vectors)
(%smallest-length vectors
(vector-length vec))
0)))))
;;; (VECTOR-INDEX-RIGHT <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; Right-to-left variant of VECTOR-INDEX.
(define vector-index-right
(letrec ((loop1 (lambda (pred? vec i)
(if (zero? i)
#f
(let ((i (sub1 i)))
(if (pred? (vector-ref vec i))
i
(loop1 pred? vec i))))))
(loop2+ (lambda (pred? vectors i)
(if (zero? i)
#f
(let ((i (sub1 i)))
(if (apply pred? (vectors-ref vectors i))
i
(loop2+ pred? vectors i)))))))
(lambda (pred? vec . vectors)
(if (null? vectors)
(loop1 pred? vec (vector-length vec))
(loop2+ pred? (cons vec vectors)
(%smallest-length vectors
(vector-length vec)))))))
;;; (VECTOR-SKIP-RIGHT <predicate?> <vector> ...)
;;; -> exact, nonnegative integer or #F
;;; (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;; Right-to-left variant of VECTOR-SKIP.
(define vector-skip-right
(letrec ((loop1 (lambda (pred? vec i)
(if (zero? i)
#f
(let ((i (sub1 i)))
(if (pred? (vector-ref vec i))
(loop1 pred? vec i)
i)))))
(loop2+ (lambda (pred? vectors i)
(if (zero? i)
#f
(let ((i (sub1 i)))
(if (apply pred? (vectors-ref vectors i))
(loop2+ pred? vectors i)
i))))))
(lambda (pred? vec . vectors)
(if (null? vectors)
(loop1 pred? vec (vector-length vec))
(loop2+ pred? (cons vec vectors)
(%smallest-length vectors
(vector-length vec)))))))
;;; (VECTOR-BINARY-SEARCH <vector> <value> <cmp>)
;;; -> exact, nonnegative integer or #F
;;; (CMP <value1> <value2>) -> integer
;;; positive -> VALUE1 > VALUE2
;;; zero -> VALUE1 = VALUE2
;;; negative -> VALUE1 < VALUE2
;;; Perform a binary search through VECTOR for VALUE, comparing each
;;; element to VALUE with CMP.
(define (vector-binary-search vec value cmp)
(let loop ((start 0)
(end (vector-length vec))
(j -1))
(let ((i (quotient (+ start end) 2)))
(if (= i j)
#f
(let ((comparison (cmp (vector-ref vec i) value)))
(cond ((zero? comparison) i)
((positive? comparison) (loop start i i))
(else (loop i end i))))))))
;;; (VECTOR-ANY <pred?> <vector> ...) -> value
;;; Apply PRED? to each parallel element in each VECTOR ...; if PRED?
;;; should ever return a true value, immediately stop and return that
;;; value; otherwise, when the shortest vector runs out, return #F.
;;; The iteration and order of application of PRED? across elements
;;; is of the vectors is strictly left-to-right.
(define vector-any
(letrec ((loop1 (lambda (pred? vec i len)
(and (not (= i len))
(or (pred? (vector-ref vec i))
(loop1 pred? vec (add1 i) len)))))
(loop2+ (lambda (pred? vectors i len)
(and (not (= i len))
(or (apply pred? (vectors-ref vectors i))
(loop2+ pred? vectors (add1 i) len))))))
(lambda (pred? vec . vectors)
(if (null? vectors)
(loop1 pred? vec 0 (vector-length vec))
(loop2+ pred? (cons vec vectors)
0 (%smallest-length vectors
(vector-length vec)))))))
;;; (VECTOR-EVERY <pred?> <vector> ...) -> value
;;; Apply PRED? to each parallel value in each VECTOR ...; if PRED?
;;; should ever return #F, immediately stop and return #F; otherwise,
;;; if PRED? should return a true value for each element, stopping at
;;; the end of the shortest vector, return the last value that PRED?
;;; returned. In the case that there is an empty vector, return #T.
;;; The iteration and order of application of PRED? across elements
;;; is of the vectors is strictly left-to-right.
(define vector-every
(letrec ((loop1 (lambda (pred? vec i len)
(or (> i len)
(if (= i len)
(pred? (vector-ref vec i))
(and (pred? (vector-ref vec i))
(loop1 pred? vec (add1 i) len))))))
(loop2+ (lambda (pred? vectors i len)
(or (> i len)
(if (= i len)
(apply pred? (vectors-ref vectors i))
(and (apply pred? (vectors-ref vectors i))
(loop2+ pred? vectors (add1 i) len)))))))
(lambda (pred? vec . vectors)
(if (null? vectors)
(loop1 pred? vec 0 (sub1 (vector-length vec)))
(loop2+ pred?
(cons vec vectors)
0
(sub1
(%smallest-length vectors
(vector-length vec))))))))
(define copy!-contract
(case->
(->r ((target mutable-vector/c)
(tstart (and/c nonneg-int?
(<=/c (- (vector-length target)
(vector-length source)))))
(source vector?))
any)
(->r ((target mutable-vector/c)
(tstart (and/c nonneg-int?
(<=/c (- (vector-length target)
(- (vector-length source)
sstart)))))
(source vector?)
(sstart (and/c nonneg-int?
(<=/c (vector-length source)))))
any)
(->pp ((target mutable-vector/c)
(tstart (and/c nonneg-int?
(<=/c (- (vector-length target)
(- send sstart)))))
(source vector?)
(sstart nonneg-int?)
(send nonneg-int?))
(<= sstart send (vector-length source))
any)))
(provide/contract (vector-swap!
(->r ((vec mutable-vector/c)
(i (and/c nonneg-int?
(</c (vector-length vec))))
(j (and/c nonneg-int?
(</c (vector-length vec)))))
any))
(rename my-vector-fill! s:vector-fill!
(case->
(-> vector? any/c any)
(->r ((vec vector?)
(fill any/c)
(start (and/c nonneg-int?
(<=/c (vector-length vec)))))
any)
(->pp ((vec vector?)
(fill any/c)
(start nonneg-int?)
(end nonneg-int?))
(<= start end (vector-length vec))
any)))
(vector-reverse! (vec-start-end-contract mutable-vector/c))
(vector-copy! copy!-contract)
(vector-reverse-copy! copy!-contract))
;;; (VECTOR-SWAP! <vector> <index1> <index2>) -> void
;;; Swap the values in the locations at INDEX1 and INDEX2.
(define (vector-swap! vec i j)
(let ((x (vector-ref vec i)))
(vector-set! vec i (vector-ref vec j))
(vector-set! vec j x)))
;;; (VECTOR-FILL! <vector> <value> [<start> <end>]) -> <vector>
;;; [R5RS+] Fill the locations in VECTOR between START, whose default
;;; is 0, and END, whose default is the length of VECTOR, with VALUE.
;;;
;;; This one can probably be made really fast natively.
(define my-vector-fill!
(case-lambda
((vec value)
(vector-fill! vec value))
((vec value start)
(my-vector-fill! vec value start (vector-length vec)))
((vec value start end)
(do ((i start (add1 i)))
((= i end))
(vector-set! vec i value))
vec)))
;;; (VECTOR-REVERSE! <vector> [<start> <end>]) -> void
;;; Destructively reverse the contents of the sequence of locations
;;; in VECTOR between START, whose default is 0, and END, whose
;;; default is the length of VECTOR.
(define vector-reverse!
(letrec ((loop (lambda (vec i j)
(when (< i j)
(vector-swap! vec i j)
(loop vec (add1 i) (sub1 j))))))
(opt-lambda (vec (start 0) (end (vector-length vec)))
(loop vec start (sub1 end)))))
;;; (VECTOR-COPY! <target> <tstart> <source> [<sstart> <send>])
;;; -> unspecified
;;; Copy the values in the locations in [SSTART,SEND) from SOURCE to
;;; to TARGET, starting at TSTART in TARGET.
(define vector-copy!
(letrec ((loop/l->r (lambda (target source send i j)
(cond ((< i send)
(vector-set! target j
(vector-ref source i))
(loop/l->r target source send
(add1 i) (add1 j))))))
(loop/r->l (lambda (target source sstart i j)
(cond ((>= i sstart)
(vector-set! target j
(vector-ref source i))
(loop/r->l target source sstart
(sub1 i) (sub1 j)))))))
(opt-lambda (target tstart source (sstart 0) (send (vector-length source)))
(if (> sstart tstart) ; Make sure we don't copy over
; ourselves.
(loop/l->r target source send sstart tstart)
(loop/r->l target source sstart (sub1 send)
(+ -1 tstart send (- sstart)))))))
;;; (VECTOR-REVERSE-COPY! <target> <tstart> <source> [<sstart> <send>])
(define vector-reverse-copy!
(letrec ((loop (lambda (target source sstart i j)
(cond ((>= i sstart)
(vector-set! target j (vector-ref source i))
(loop target source sstart
(sub1 i)
(add1 j)))))))
(opt-lambda (target tstart source (sstart 0) (send (vector-length source)))
(cond ((and (eq? target source)
(= sstart tstart))
(vector-reverse! target tstart send))
((and (eq? target source)
(or (between? sstart tstart send)
(between? tstart sstart
(+ tstart (- send sstart)))))
;an error in the reference implement here
(error 'vector-reverse-copy!
"Vector range for self-copying overlaps"))
(else
(loop target source sstart
(sub1 send)
tstart))))))
(define (between? x y z)
(and (< x y)
(<= y z)))
(provide/contract (rename my-vector->list s:vector->list
(vec-start-end-contract vector?))
(reverse-vector->list vec-start-end-contract)
(reverse-list->vector (-> list? any)))
;;; (VECTOR->LIST <vector> [<start> <end>]) -> list
;;; [R5RS+] Produce a list containing the elements in the locations
;;; between START, whose default is 0, and END, whose default is the
;;; length of VECTOR, from VECTOR.
(define my-vector->list
(opt-lambda (vec (start 0) (end (vector-length vec)))
;(unfold (lambda (i) ; No SRFI 1.
; (< i start))
; (lambda (i) (vector-ref vec i))
; (lambda (i) (sub1 i))
; (sub1 end))
(do ((i (sub1 end) (sub1 i))
(result '() (cons (vector-ref vec i) result)))
((< i start) result))))
;;; (REVERSE-VECTOR->LIST <vector> [<start> <end>]) -> list
;;; Produce a list containing the elements in the locations between
;;; START, whose default is 0, and END, whose default is the length
;;; of VECTOR, from VECTOR, in reverse order.
(define reverse-vector->list
(opt-lambda (vec (start 0) (end (vector-length vec)))
;(unfold (lambda (i) (= i end)) ; No SRFI 1.
; (lambda (i) (vector-ref vec i))
; (lambda (i) (add1 i))
; start)
(do ((i start (add1 i))
(result '() (cons (vector-ref vec i) result)))
((= i end) result))))
;;; (REVERSE-LIST->VECTOR <list> -> vector
;;; Produce a vector containing the elements in LIST in reverse order.
(define (reverse-list->vector lst)
(let* ((len (length lst))
(vec (make-vector len)))
(unfold1! (lambda (index l) (values (car l) (cdr l)))
vec
(sub1 len)
lst)
vec)))

View File

@ -1,7 +1,7 @@
;; Implementation of SRFI 63 "Homogeneous and Heterogeneous Arrays" for PLT
;; Scheme.
;; Copyright (C) 2006 David Van Horn
;; Copyright (C) 2007 Chongkai Zhu
;; Released under the same terms as the SRFI reference implementation.
@ -9,201 +9,118 @@
;; Copyright (C) 2001, 2003, 2005, 2006 Aubrey Jaffer
(module |63| mzscheme
(require (lib "4.ss" "srfi")
(lib "9.ss" "srfi")
(lib "16.ss" "srfi")
(lib "contract.ss"))
(define-syntax enumerate
(syntax-rules ()
((enumerate name (const val) ...)
(define-syntax name
(syntax-rules (const ...)
((name const) val) ...)))))
(require (lib "contract.ss"))
(enumerate a:
(vector 0)
(floc128b 1) (floc64b 2) (floc32b 3) (floc16b 4)
(flor128b 5) (flor64b 6) (flor32b 7) (flor16b 8)
(floq128d 9) (floq64d 10) (floq32d 11)
(fixz64b 12) (fixz32b 13) (fixz16b 14) (fixz8b 15)
(fixn64b 16) (fixn32b 17) (fixn16b 18) (fixn8b 19)
(bool 20)
(string 21))
;; This implementation uses SRFI-4 vectors as the store for
;; several of the homogeneous array types, but several types
;; are implemented using plain vectors. To improve the
;; implementation, simply update the appropriate entry in
;; this table.
(define implementation-list
(let ((ls list-immutable))
(ls (ls (a: vector) make-vector vector-ref vector-set!)
(ls (a: floc128b) make-vector vector-ref vector-set!)
(ls (a: floc64b) make-f64vector f64vector-ref f64vector-set!)
(ls (a: floc32b) make-f32vector f32vector-ref f32vector-set!)
(ls (a: floc16b) make-vector vector-ref vector-set!)
(ls (a: flor128b) make-vector vector-ref vector-set!)
(ls (a: flor64b) make-vector vector-ref vector-set!)
(ls (a: flor32b) make-vector vector-ref vector-set!)
(ls (a: flor16b) make-vector vector-ref vector-set!)
(ls (a: floq128d) make-vector vector-ref vector-set!)
(ls (a: floq64d) make-vector vector-ref vector-set!)
(ls (a: floq32d) make-vector vector-ref vector-set!)
(ls (a: fixz64b) make-s64vector s64vector-ref s64vector-set!)
(ls (a: fixz32b) make-s32vector s32vector-ref s32vector-set!)
(ls (a: fixz16b) make-s16vector s16vector-ref s16vector-set!)
(ls (a: fixz8b) make-s8vector s8vector-ref s8vector-set!)
(ls (a: fixn64b) make-u64vector u64vector-ref u64vector-set!)
(ls (a: fixn32b) make-u32vector u32vector-ref u32vector-set!)
(ls (a: fixn16b) make-u16vector u16vector-ref u16vector-set!)
(ls (a: fixn8b) make-u8vector u8vector-ref u8vector-set!)
(ls (a: bool) make-vector vector-ref vector-set!)
(ls (a: string) make-string string-ref string-set!))))
(define-struct array:rtd
(dimensions
scales ;list of dimension scales
offset ;exact integer
store ;data
)
#f)
;; PLTisms: list-immutable, vector-immutable, sub1, add1,
;; arithmetic-shift, contracts.
(define-record-type :strict-array
(make-strict-array dimensions scales offset store store-type)
strict-array?
(dimensions strict-array-dimensions)
(scales strict-array-scales)
(offset strict-array-offset)
(store strict-array-store)
(store-type strict-array-store-type))
(define (array-dimensions array)
(define (array:dimensions array)
(cond ((vector? array) (list (vector-length array)))
((string? array) (list (string-length array)))
(else (strict-array-dimensions array))))
((bytes? array) (list (bytes-length array)))
(else (array:rtd-dimensions array))))
(define (array-scales array)
(cond ((string? array) '(1))
((vector? array) '(1))
(else (strict-array-scales array))))
(define (array:scales obj)
(if (or (string? obj)
(bytes? obj)
(vector? obj))
'(1)
(array:rtd-scales obj)))
(define (array-store array)
(cond ((string? array) array)
((vector? array) array)
(else (strict-array-store array))))
(define store-makers
(apply vector-immutable
(map (lambda (item) (list-ref item 1)) implementation-list)))
(define (array:store obj)
(if (or (string? obj)
(bytes? obj)
(vector? obj))
obj
(array:rtd-store obj)))
(define store-reffers
(apply vector-immutable
(map (lambda (item) (list-ref item 2)) implementation-list)))
(define store-setters
(apply vector-immutable
(map (lambda (item) (list-ref item 3)) implementation-list)))
(define (array-store-type array)
(cond ((string? array) (a: string))
((vector? array) (a: vector))
(else (strict-array-store-type array))))
(define (array-store-ref array)
(vector-ref store-reffers (array-store-type array)))
(define (array-store-set array)
(vector-ref store-setters (array-store-type array)))
(define (array-store-maker array-type)
(vector-ref store-makers array-type))
(define (array-offset array)
(cond ((string? array) 0)
((vector? array) 0)
(else (strict-array-offset array))))
(define (array:offset obj)
(if (or (string? obj)
(bytes? obj)
(vector? obj))
0
(array:rtd-offset obj)))
(define (array? obj)
(or (string? obj)
(bytes? obj)
(vector? obj)
(strict-array? obj)))
(array:rtd? obj)))
(define (s:equal? obj1 obj2)
(or (equal? obj1 obj2)
(and (array? obj1) (array? obj2)
(equal? (array-dimensions obj1)
(array-dimensions obj2))
(s:equal? (array->vector obj1) (array->vector obj2)))))
(define (array-rank x)
(if (array? x)
(length (array-dimensions x))
0))
(define (array-rank obj)
(if (array? obj) (length (array:dimensions obj)) 0))
(define array-dimensions array:dimensions)
(define (make-array prototype . dimensions)
(let ((prot (array-store prototype))
(pdims (array-dimensions prototype))
(onedim? (eqv? 1 (length dimensions)))
(tcnt (apply * dimensions)))
(let ((initializer
(if (zero? (apply * pdims)) '()
(list ;; a list with single element at origin
(apply array-ref prototype
(map (lambda (x) 0) pdims))))))
(cond ((and onedim? (string? prot))
(apply make-string (car dimensions) initializer))
((and onedim? (vector? prot))
(apply make-vector (car dimensions) initializer))
(else
(let* ((store-type (array-store-type prototype))
(store (apply (array-store-maker store-type)
tcnt initializer)))
(let loop ((dims (reverse dimensions)) (scales '(1)))
(if (null? dims)
(make-strict-array dimensions (cdr scales) 0
store
store-type)
(loop (cdr dims)
(cons (* (car dims) (car scales)) scales))))))))))
(define tcnt (apply * dimensions))
(let ((store
(cond ((string? prototype)
(case (string-length prototype)
((0) (make-string tcnt))
(else (make-string tcnt
(string-ref prototype 0)))))
((bytes? prototype)
(case (bytes-length prototype)
((0) (make-bytes tcnt))
(else (make-bytes tcnt
(bytes-ref prototype 0)))))
(else
(let ((pdims (array:dimensions prototype)))
(case (apply * pdims)
((0) (make-vector tcnt))
(else (make-vector tcnt
(apply array-ref prototype
(map (lambda (x) 0) pdims))))))))))
(define (loop dims scales)
(if (null? dims)
(make-array:rtd dimensions (cdr scales) 0 store)
(loop (cdr dims) (cons (* (car dims) (car scales)) scales))))
(loop (reverse dimensions) '(1))))
(define (make-shared-array array mapper . dimensions)
(define odl (array-scales array))
(define odl (array:scales array))
(define rank (length dimensions))
(define shape
(map (lambda (dim) (if (list? dim) dim (list 0 (sub1 dim)))) dimensions))
(do ((idx (sub1 rank) (sub1 idx))
(uvt (if (zero? rank)
'()
(append (cdr (vector->list (make-vector rank 0))) '(1)))
(uvt (append (cdr (vector->list (make-vector rank 0))) '(1))
(append (cdr uvt) '(0)))
(uvts '() (cons uvt uvts)))
((negative? idx)
(let ((ker0 (apply + (map * odl (apply mapper uvt)))))
(make-strict-array
(map (lambda (dim) (add1 (- (cadr dim) (car dim)))) shape)
(map (lambda (uvt) (- (apply + (map * odl (apply mapper uvt))) ker0))
uvts)
(apply +
(array-offset array)
(map * odl (apply mapper (map car shape))))
(array-store array)
(array-store-type array))))))
(make-array:rtd
(map (lambda (dim) (add1 (- (cadr dim) (car dim)))) shape)
(map (lambda (uvt) (- (apply + (map * odl (apply mapper uvt))) ker0))
uvts)
(apply +
(array:offset array)
(map * odl (apply mapper (map car shape))))
(array:store array))))))
(define (list->array rank proto lst)
(define dimensions
(do ((shp '() (cons (length row) shp))
(row lst (car lst))
(rnk (sub1 rank) (sub1 rnk)))
((negative? rnk) (reverse shp))))
((negative? rnk) (reverse shp))))
(let ((nra (apply make-array proto dimensions)))
(define (l2ra dims idxs row)
(cond ((null? dims)
(apply array-set! nra row (reverse idxs)))
(;; ERROR CHECKING (should be a contract)
(if (not (eqv? (car dims) (length row)))
(error "non-rectangular array" dims dimensions))
((unless (eqv? (car dims) (length row))
(error 'list->array
"non-rectangular array ~a ~a"
dims dimensions))
(do ((idx 0 (add1 idx))
(row row (cdr row)))
((>= idx (car dims)))
((>= idx (car dims)))
(l2ra (cdr dims) (cons idx idxs) (car row))))))
(l2ra dimensions '() lst)
nra))
@ -214,19 +131,22 @@
(apply array-ref ra (reverse idxs))
(do ((lst '() (cons (ra2l (cdr dims) (cons idx idxs)) lst))
(idx (sub1 (car dims)) (sub1 idx)))
((negative? idx) lst))))
((negative? idx) lst))))
(ra2l (array-dimensions ra) '()))
(define (vector->array vect prototype . dimensions)
(let ((vdx (vector-length vect))
(ra (apply make-array prototype dimensions)))
(define vdx (vector-length vect))
(unless (eqv? vdx (apply * dimensions))
(error 'vector->array
"~a not equal to ~a" vdx (cons '* dimensions)))
(let ((ra (apply make-array prototype dimensions)))
(define (v2ra dims idxs)
(cond ((null? dims)
(set! vdx (sub1 vdx))
(apply array-set! ra (vector-ref vect vdx) (reverse idxs)))
(else
(do ((idx (sub1 (car dims)) (sub1 idx)))
((negative? idx) vect)
((negative? idx) vect)
(v2ra (cdr dims) (cons idx idxs))))))
(v2ra dimensions '())
ra))
@ -239,95 +159,60 @@
(if (null? dims)
(let ((val (apply array-ref ra (reverse idxs))))
(set! vdx (sub1 vdx))
(vector-set! vect vdx val))
(vector-set! vect vdx val)
vect)
(do ((idx (sub1 (car dims)) (sub1 idx)))
((negative? idx) vect)
((negative? idx) vect)
(ra2v (cdr dims) (cons idx idxs)))))
(ra2v dims '())
vect))
(ra2v dims '())))
(define (array-in-bounds? array . indices)
(do ((bnds (array-dimensions array) (cdr bnds))
(define (array:in-bounds? array indices)
(do ((bnds (array:dimensions array) (cdr bnds))
(idxs indices (cdr idxs)))
((or (null? bnds)
(null? idxs)
(not (integer? (car idxs)))
(not (< -1 (car idxs) (car bnds))))
(null? idxs)
(not (integer? (car idxs)))
(not (< -1 (car idxs) (car bnds))))
(and (null? bnds) (null? idxs)))))
(define (array-ref array . indices)
((array-store-ref array)
(array-store array)
(apply + (array-offset array) (map * (array-scales array) indices))))
(define (array-in-bounds? array . indices)
(array:in-bounds? array indices))
(define (array-set! array obj . indices)
((array-store-set array)
(array-store array)
(apply + (array-offset array) (map * (array-scales array) indices))
(define (array-ref array . indices)
(define store (array:store array))
(or (array:in-bounds? array indices)
(error 'array-ref "bad-indices ~a" indices))
((cond ((string? store)
string-ref)
((bytes? store)
bytes-ref)
(else
vector-ref))
store (apply + (array:offset array) (map * (array:scales array) indices))))
(define (array-set! array obj . indices)
(define store (array:store array))
(or (array:in-bounds? array indices)
(error 'array-set! "bad-indices ~a" indices))
((cond ((string? store)
string-set!)
((bytes? store)
bytes-set!)
(else
vector-set!))
store (apply + (array:offset array) (map * (array:scales array) indices))
obj))
(define (tag-maker array-type)
(case-lambda
(() (make-strict-array
'(0) '(1) 0
((array-store-maker array-type) 0)
array-type))
((x) (make-strict-array
'(1) '(1) 0
((array-store-maker array-type) 1 x)
array-type))))
(define A: vector)
(define a:floc128b (tag-maker (a: floc128b)))
(define a:floc64b (tag-maker (a: floc64b)))
(define a:floc32b (tag-maker (a: floc32b)))
(define a:floc16b (tag-maker (a: floc16b)))
(define a:flor128b (tag-maker (a: flor128b)))
(define a:flor64b (tag-maker (a: flor64b)))
(define a:flor32b (tag-maker (a: flor32b)))
(define a:flor16b (tag-maker (a: flor16b)))
(define a:floq128d (tag-maker (a: floq128d)))
(define a:floq64d (tag-maker (a: floq64d)))
(define a:floq32d (tag-maker (a: floq32d)))
(define a:fixz64b (tag-maker (a: fixz64b)))
(define a:fixz16b (tag-maker (a: fixz16b)))
(define a:fixz32b (tag-maker (a: fixz32b)))
(define a:fixz8b (tag-maker (a: fixz8b)))
(define a:fixn64b (tag-maker (a: fixn64b)))
(define a:fixn32b (tag-maker (a: fixn32b)))
(define a:fixn16b (tag-maker (a: fixn16b)))
(define a:fixn8b (tag-maker (a: fixn8b)))
(define a:bool (tag-maker (a: bool)))
;; --
;; Contracts for module |63|.
;; Returns a contract for a binary flonum complex prototype function
;; given the number of bits (NOT USED).
(define (make-floc/c _)
(case-> (-> array?)
(-> (and/c inexact? complex?) array?)))
;; Returns a contract for a binary flonum real prototype function
;; given the number of bits (NOT USED).
(define (make-flor/c _)
(case-> (-> array?)
(-> (and/c inexact? real?) array?)))
;; Returns a contract for a decimal flonum rational prototype function
;; given the number of bits (NOT USED).
(define (make-floq/c _)
(case-> (-> array?)
(-> (and/c exact? rational?) array?)))
;; Returns a contract for a binary fixnum prototype function given
;; the number of bits and whether the elements are signed.
(define (make-fix/c n signed?)
(case->
(-> array?)
@ -338,35 +223,28 @@
(integer-in 0 (sub1 (arithmetic-shift 1 n)))))
array?)))
(provide/contract
(array? (-> any/c boolean?))
(s:equal? (-> any/c any/c boolean?))
(array-rank (-> any/c natural-number/c))
(array-dimensions (-> array? (listof natural-number/c)))
(make-array
(->r ((proto array?)) dimensions (listof natural-number/c)
(lambda (result)
(let ((rank (length dimensions)))
(cond ((and (string? proto) (= 1 rank))
(string? result))
((and (vector? proto) (= 1 rank))
(vector? result))
(else
(equal? (array-store-type proto)
(array-store-type result))))))))
(->r ((proto array?)) dimensions (listof natural-number/c) array?))
(make-shared-array
(->r ((array array?)
(mapper (->* () (listof natural-number/c)
((listof natural-number/c)))))
(mapper procedure?))
indices (listof natural-number/c)
array?))
(list->array
(->r ((rank natural-number/c) (proto array?) (list list?)) array?))
(->r ((rank natural-number/c)
(proto array?)
(list (if (zero? rank)
any/c
list?)))
array?))
(array->list
(->r ((array array?))
@ -376,7 +254,7 @@
(array->vector
(->r ((array array?)) vector?))
(array-in-bounds?
(->r ((array array?)) indices (listof any/c) boolean?))
@ -396,35 +274,29 @@
any))
;; Binary flonum complex
(a:floc128b (make-floc/c 128))
(a:floc64b (make-floc/c 64))
(a:floc32b (make-floc/c 32))
(a:floc16b (make-floc/c 16))
;; Binary flonum real
(a:flor128b (make-flor/c 128))
(a:flor64b (make-flor/c 64))
(a:flor32b (make-flor/c 32))
(a:flor16b (make-flor/c 16))
(rename A: A:floC128b (make-floc/c 128))
(rename A: A:floC64b (make-floc/c 64))
(rename A: A:floC32b (make-floc/c 32))
(rename A: A:floC16b (make-floc/c 16))
;; Binary flonum real
(rename A: A:floR128b (make-flor/c 128))
(rename A: A:floR64b (make-flor/c 64))
(rename A: A:floR32b (make-flor/c 32))
(rename A: A:floR16b (make-flor/c 16))
;; Decimal flonum rational
(a:floq128d (make-floq/c 128))
(a:floq64d (make-floq/c 64))
(a:floq32d (make-floq/c 32))
;; Binary fixnum
(a:fixz64b (make-fix/c 64 #t))
(a:fixz32b (make-fix/c 32 #t))
(a:fixz16b (make-fix/c 16 #t))
(a:fixz8b (make-fix/c 8 #t))
(a:fixn64b (make-fix/c 64 #f))
(a:fixn32b (make-fix/c 32 #f))
(a:fixn16b (make-fix/c 16 #f))
(a:fixn8b (make-fix/c 8 #f))
(rename A: A:fixZ64b (make-fix/c 64 #t))
(rename A: A:fixZ32b (make-fix/c 32 #t))
(rename A: A:fixZ16b (make-fix/c 16 #t))
(rename A: A:fixZ8b (make-fix/c 8 #t))
(rename A: A:fixN64b (make-fix/c 64 #f))
(rename A: A:fixN32b (make-fix/c 32 #f))
(rename A: A:fixN16b (make-fix/c 16 #f))
(rename A: A:fixN8b (make-fix/c 8 #f))
;; Boolean
(a:bool
(rename A: A:bool
(case-> (-> array?)
(-> boolean? array?))))
) ; end of module |63|
)