fix typoes in numbers reference (PR 9271)
svn: r9153
This commit is contained in:
parent
2b92bd2e6e
commit
6a0150d518
|
@ -42,7 +42,7 @@ single-precision numbers.
|
|||
The precision and size of exact numbers is limited only by available
|
||||
memory (and the precision of operations that can produce irrational
|
||||
numbers). In particular, adding, multiplying, subtracting, and
|
||||
dividing exact numbers always produces an extract result.
|
||||
dividing exact numbers always produces an exact result.
|
||||
|
||||
Inexact numbers can be coerced to exact form, except for the inexact
|
||||
numbers @scheme[+inf.0], @scheme[-inf.0], and @scheme[+nan.0], which
|
||||
|
@ -50,18 +50,15 @@ have no exact form. @index["division by inexact zero"]{Dividing} a
|
|||
number by exact zero raises an exception; dividing a non-zero number
|
||||
other than @scheme[+nan.0] by an inexact zero returns @scheme[+inf.0]
|
||||
or @scheme[-inf.0], depending on the sign of the dividend. The
|
||||
infinities @scheme[+inf.0] and @scheme[-inf.0] are integers, and they
|
||||
answer @scheme[#t] for both @scheme[even?] and @scheme[odd?]. The
|
||||
@scheme[+nan.0] value is not an integer and is not @scheme[=] to
|
||||
itself, but @scheme[+nan.0] is @scheme[eqv?] to itself. Conversely,
|
||||
@scheme[(= 0.0 -0.0)] is @scheme[#t], but @scheme[(eqv? 0.0 -0.0)] is
|
||||
@scheme[#f]. The datum @scheme[-nan.0] refers to the same constant as
|
||||
@scheme[+nan.0].
|
||||
@scheme[+nan.0] value is not @scheme[=] to itself, but @scheme[+nan.0]
|
||||
is @scheme[eqv?] to itself. Conversely, @scheme[(= 0.0 -0.0)] is
|
||||
@scheme[#t], but @scheme[(eqv? 0.0 -0.0)] is @scheme[#f]. The datum
|
||||
@schemevalfont{-nan.0} refers to the same constant as @scheme[+nan.0].
|
||||
|
||||
Calculations with infinites produce results consistent with IEEE
|
||||
double-precision floating point where IEEE specifies the result; in
|
||||
cases where IEEE provides no specification (e.g., @scheme[(angle
|
||||
+inf.0+inf.0)]), the result corresponds to the limit approaching
|
||||
+inf.0+inf.0i)]), the result corresponds to the limit approaching
|
||||
infinity, or @scheme[+nan.0] if no such limit exists.
|
||||
|
||||
A @deftech{fixnum} is an exact integer whose two's complement
|
||||
|
@ -481,11 +478,20 @@ used.
|
|||
|
||||
|
||||
@defproc*[([(atan [z number?]) number?]
|
||||
[(atan [y real?] [x real?]) number?])]{Returns the arctangent of
|
||||
@scheme[z] or of @scheme[(make-rectangular #, @scheme[x] #, @scheme[y])].}
|
||||
[(atan [y real?] [x real?]) number?])]{
|
||||
|
||||
@examples[(atan 0.5) (atan 2 1) (atan -2 -1) (atan 1+05.i)]
|
||||
In the one-argument case, returns the arctangent of the inexact
|
||||
approximation of @scheme[z], except that the result is an exact
|
||||
@scheme[0] for an exact @scheme[0] argument.
|
||||
|
||||
In the two-argument case, the result is roughly the same as @scheme[(/
|
||||
(exact->inexact y) (exact->inexact x))], but the signs of @scheme[y]
|
||||
and @scheme[x] determine the quadrant of the result. Moreover, a
|
||||
suitable angle is returned when @scheme[y] divided by @scheme[x]
|
||||
produces @scheme[+nan.0] in the case that neither @scheme[y] nor
|
||||
@scheme[x] is @scheme[+nan.0].
|
||||
|
||||
@examples[(atan 0.5) (atan 2 1) (atan -2 -1) (atan 1+05.i) (atan +inf.0 -inf.0)]}
|
||||
|
||||
@; ------------------------------------------------------------------------
|
||||
@section{Complex Numbers}
|
||||
|
|
Loading…
Reference in New Issue
Block a user