Remove infer.ss

This commit is contained in:
Sam Tobin-Hochstadt 2008-06-10 14:27:49 -04:00
parent e912818f86
commit 6afcb9aa96
5 changed files with 1 additions and 414 deletions

View File

@ -11,7 +11,6 @@
"utils.ss" ;; doesn't need tests
"type-rep.ss" ;; doesn't need tests
"unify.ss" ;; needs tests
"infer.ss"
"type-effect-convenience.ss" ;; maybe needs tests
"union.ss"
"subtype.ss" ;; has tests

View File

@ -1,410 +0,0 @@
#lang scheme/base
;; NO LONGER USED
;; NOT YET REMOVED AS DOCUMENTATION
(require "unify.ss" "type-comparison.ss" "type-rep.ss" "effect-rep.ss" "subtype.ss"
"planet-requires.ss" "tc-utils.ss" "union.ss"
"resolve-type.ss" "type-utils.ss"
"type-effect-convenience.ss"
(lib "trace.ss")
(lib "plt-match.ss")
(lib "list.ss"))
(require (galore))
#;(provide infer infer/list infer/list/vararg combine table:un exn:infer?)
;; exn representing failure of inference
;; s,t both types
#;
(define-struct (exn:infer exn:fail) (s t))
(define-values (fail-sym exn:infer?)
(let ([sym (gensym)])
(values sym (lambda (s) (eq? s sym)))))
;; inference failure - masked before it gets to the user program
(define-syntax fail!
(syntax-rules ()
[(_ s t) (raise fail-sym)
#;(raise (make-exn:infer "inference failed" (current-continuation-marks) s t))
#;(error "inference failed" s t)]))
;; conveneice function
(define (alist->mapping vars) (table:alist->eq (map (lambda (x) (cons x 'fail)) vars)))
;; flag is one of: 'co, 'contra, 'both, #f
;; Mapping is a table that maps symbols to Results
;; A Result is one of:
;; - 'fail (not yet filled in)
;; - #f (not a variable we're concerned with)
;; - (list flag type)
;;
;; s, t : Type
;; vars : Listof[Symbol]
;; produces a substitution for vars, or #f
;; the substitution makes s a supertype of t
;; only vars will be substituted, regardless of other free vars
(define ((mk-infer f) s t vars)
(let ([mapping (alist->mapping vars)])
(with-handlers
([exn:infer? (lambda _ #f)])
(mapping->subst (f s t mapping 'co)))))
;; table[symbol, (list flag type)] -> substitution
;; convert a mapping to a substitution
(define (mapping->subst x)
(define sexp (table:to-sexp x))
(define result (filter (lambda (x) (list? (cadr x))) sexp))
;(printf "sexp: ~a~n" sexp)
(map (lambda (x) (list (car x) (cadr (cadr x)))) result))
;(trace mapping->subst)
;; least upper bound of two flags
;; the lattice is like this:
;; 'both
;; / \
;; 'co 'contra
;; \ /
;; #f
(define (lub a b)
(match (list a b)
[(list x x) x]
[(list #f x) x]
[(list x #f) x]
[(list 'both x) 'both]
[(list x 'both) 'both]
[(list x y) 'both]))
;; combine: flag -> Result Result -> Result
;; combine two results into one
(define ((combine flag*) s t)
(define (type-lub s t)
(cond [(subtype s t) t]
[(subtype t s) s]
[else (Un s t)]))
(define (type-glb s t)
(cond [(subtype s t) s]
[(subtype t s) t]
[else (fail! s t)]))
(define (go flag s t)
(cond [(and (eq? flag 'both) (type-equal? s t)) s]
[(eq? flag 'both) (fail! s t)]
[(eq? flag 'co) (type-lub s t)]
[(eq? flag 'contra) (type-glb s t)]
[(eq? flag #f) (go flag* s t)]
[else (int-err "bad flag value ~a" flag)]))
(match (list s t)
[(list 'fail t) t]
[(list t 'fail) t]
[(list (list sf s) (list tf t))
(let* ([flag (lub flag* (lub sf tf))]
[new-ty (go flag s t)])
(list flag new-ty))]))
#;
;(printf "flags : ~a ~a~n" sf tf)
(cond
[(and sf tf (type-equal? s t)) (list (if (eq? sf tf) sf 'both) s)] ;; equal is fine
[(memq 'both (list sf tf)) (fail! s t)] ;; not equal, needed to be
[(and sf tf (not (eq? sf tf))) (fail! s t)] ;; not equal, needed to be
[else
(let ([flag (or sf tf flag)])
(printf "flag is ~a~n" flag)
(cond
[(eq? 'co flag) (list 'co (Un s t))]
[(and (eq? 'contra flag) (subtype s t)) (list 'contra s)]
[(and (eq? 'contra flag) (subtype t s)) (list 'contra t)]
[else (fail! s t)]))])
;(trace combine)
;; combine two tables
;; table:un : flag -> Mapping Mapping -> Mapping
(define ((table:un flag) a b) (table:union/value a b (combine flag)))
;; infer/int/union : Listof[Type] Listof[Type] Mapping Flag -> Mapping
;; ss and ts represent unions of types
(define (infer/int/union ss ts mapping flag)
(unless (= (length ss) (length ts))
(fail! ss ts))
;; first, we remove common elements of ss and ts
(let-values ([(ss* ts*)
(values (filter (lambda (se) (not (memq se ts))) ss)
(filter (lambda (te) (not (memq te ss))) ts))])
;; we need to try all the pairwise possibilites
(let ([l (map (lambda (x y) (infer/int x y mapping flag)) ss* ts*)])
(foldl (table:un flag) (table:make-eq) l))))
;; infer/int/list : Listof[Type] Listof[Type] Mapping Flag -> Mapping
(define (infer/int/list ss ts mapping flag)
(unless (= (length ss) (length ts))
(fail! ss ts))
(let ([l (map (lambda (x y) (infer/int x y mapping flag)) ss ts)])
(foldl (table:un flag) (table:make-eq) l)))
;; infer/int/list/eff : Listof[Effect] Listof[Effect] Mapping Flag -> Mapping
(define (infer/int/list/eff ss ts mapping flag)
(cond [(or (null? ss) (null? ts)) mapping]
[(not (= (length ss) (length ts)))
;(error 'bad "~a ~a" ss ts)
(fail! ss ts)]
[else (let ([l (map (lambda (x y) (infer/int/eff x y mapping flag)) ss ts)])
(foldl (table:un flag) (table:make-eq) l))]))
;; infer/int/list/vararg : Listof[Type] Type Listof[Type] Mapping Flag Boolean -> Mapping
(define (infer/int/list/vararg ss rest ts mapping flag [direction #t])
(unless (<= (length ss) (length ts))
(printf "failing!~n")
(fail! ss ts))
(let loop-types
([ss ss]
[ts ts]
[tbl mapping])
(define (ii a b)
(if direction
(infer/int a b tbl flag)
(infer/int b a tbl flag)))
(cond [(null? ts) tbl]
[(and rest (null? ss))
(let ([tbl* (ii rest (car ts))])
(loop-types ss (cdr ts) tbl*))]
[else
(let ([tbl* (ii (car ss) (car ts))])
(loop-types (cdr ss) (cdr ts) tbl*))])))
(define (infer/list/vararg ss rest ts vars)
(let ([mapping (alist->mapping vars)])
(with-handlers
([exn:infer? (lambda _ #f)])
(mapping->subst (infer/int/list/vararg ss rest ts mapping 'co)))))
;; Flag -> Flag
(define (swap flag) (case flag
[(co) 'contra]
[(contra) 'co]
[(both) 'both]
[(start) 'start]
[else (int-err "bad flag: ~a" flag)]))
(define (co? x) (eq? x 'co))
(define (contra? x) (eq? x 'contra))
(define (infer/int/eff s t mapping flag)
(let ([fail! (case-lambda [() (fail! s t)]
[(s t) (fail! s t)])])
(parameterize ([match-equality-test type-equal?])
(match (list s t)
[(list t t) mapping]
[(list (Latent-Restrict-Effect: t1) (Latent-Restrict-Effect: t2)) (infer/int t1 t2 mapping flag)]
[(list (Latent-Remove-Effect: t1) (Latent-Remove-Effect: t2)) (infer/int t1 t2 mapping flag)]
))))
;(trace fail!)
;; type type mapping -> mapping
(define (infer/int s t mapping flag)
(let ([fail! (case-lambda [() (fail! s t)]
[(s t) (fail! s t)])])
(define (i/i s t) (infer/int s t mapping flag))
(parameterize ([match-equality-test type-equal?])
(match (list s t)
[(list t t) mapping]
[(list (F: v) t)
(let ([cur (table:lookup v mapping)])
(match cur
;; we haven't yet seen this variable
['fail
(cond [(and (eq? flag 'contra) (type-equal? Univ t)) mapping]
[(and (eq? flag 'co) (type-equal? (Un) t)) mapping]
[else
(table:insert v (list #f t) mapping)])]
;; we are ignoring this variable, but they weren't the same
[#f (fail!)]
;; this variable has already been unified
[(list cur-flag cur-t)
(cond
[(or (not cur-flag) (eq? flag cur-flag))
;; this variable has only been handled once, or
;; we're still going in the correct direction
(cond
;; this is the same type we've already seen, so don't change the flag
[(type-equal? cur-t t) mapping]
;; this is a supertype of what's been found before
[(and (eq? flag 'co) (subtype cur-t t))
(table:insert v (list flag t) mapping)]
;; this is a subtype of what's been found before
[(and (eq? flag 'co) (subtype t cur-t))
(table:insert v (list flag cur-t) mapping)]
[(eq? flag 'co)
(table:insert v (list flag (Un t cur-t)) mapping)]
;; this is a subtype of what we found before
[(and (eq? flag 'contra) (subtype t cur-t))
(table:insert v (list flag t) mapping)]
;; this is a supertype of what we found before
[(and (eq? flag 'contra) (subtype t cur-t))
(table:insert v (list flag cur-t) mapping)]
[(and (eq? flag 'both) (subtype t cur-t) (subtype cur-t t))
mapping]
[(eq? flag 'both)
(fail! cur-t t)]
;; impossible
[else (int-err "bad flag value: ~a" flag)])]
;; we've switched directions at least once
[(type-equal? cur-t t)
;; we're still ok
(table:insert (list 'both cur-t) mapping)]
[else
;; we're not ok
(fail! cur-t t)])]))]
;; names are compared for equality
[(list (Name: n) (Name: n*))
(if (free-identifier=? n n*)
mapping
(fail!))]
;; type application
[(list (App: (Name: n) args _)
(App: (Name: n*) args* _))
(unless (free-identifier=? n n*)
(fail!))
(infer/int/list args args* mapping flag)]
;; vectors and boxes just recur, but are invariant
[(list (Vector: s) (Vector: t)) (infer/int s t mapping 'both)]
[(list (Box: s) (Box: t)) (infer/int s t mapping 'both)]
;; pairs just recur
[(list (Pair: s1 s2) (Pair: t1 t2))
(infer/int/list (list s1 s2) (list t1 t2) mapping flag)]
;; ht just recur
[(list (Hashtable: s1 s2) (Hashtable: t1 t2))
(infer/int/list (list s1 s2) (list t1 t2) mapping 'both)]
[(list (Syntax: s1) (Syntax: s2))
(infer/int s1 s2 mapping flag)]
;; structs just recur
[(list (Struct: nm p flds proc _ _ _) (Struct: nm p flds* proc* _ _ _))
(cond [(and proc proc*)
(infer/int/list (cons proc flds) (cons proc* flds*) mapping flag)]
[(or proc proc*)
(fail!)]
[else (infer/int/list flds flds* mapping flag)])]
;; parameters just recur
[(list (Param: in1 out1) (Param: in2 out2))
(infer/int/list (list in1 out1) (list in2 out2) mapping flag)]
;; if we have two mu's, we rename them to have the same variable
;; and then compare the bodies
[(list (Mu-unsafe: s) (Mu-unsafe: t))
(infer/int s t mapping flag)]
;; other mu's just get unfolded
[(list s (? Mu? t)) (infer/int s (unfold t) mapping flag)]
[(list (? Mu? s) t) (infer/int (unfold s) t mapping flag)]
;; two unions with the same number of elements, so we just try to unify them pairwise
[(list (Union: l1) (Union: l2))
(=> unmatch)
(unless (= (length l1) (length l2))
(unmatch))
(infer/int/union l1 l2 mapping flag)]
;; new impl for functions
[(list (Function: (list t-arr ...))
(Function: (list s-arr ...)))
(=> unmatch)
(let loop ([t-arr t-arr] [s-arr s-arr] [mapping mapping])
(define (U a b) ((table:un flag) a b))
(define (unmatch!) (unmatch))
(cond [(and (null? t-arr) (null? s-arr)) mapping]
[(or (null? t-arr) (null? s-arr)) (unmatch!)]
[else (match (list (car t-arr) (car s-arr))
[(list (arr: ts t t-rest #f t-thn-eff t-els-eff) (arr: ss s s-rest #f s-thn-eff s-els-eff))
(let ([arg-mapping
(cond [(and t-rest s-rest (= (length ts) (length ss)))
(infer/int/list (cons t-rest ts) (cons s-rest ss) mapping (swap flag))]
[(and (not t-rest) (not s-rest) (= (length ts) (length ss)))
(infer/int/list ts ss mapping (swap flag))]
[(and t-rest (not s-rest) (<= (length ts) (length ss)))
(infer/int/list/vararg ts t-rest ss mapping (swap flag) #t)]
[(and s-rest (not t-rest) (>= (length ts) (length ss)))
(infer/int/list/vararg ss s-rest ts mapping (swap flag) #f)]
[else (unmatch!)])]
[ret-mapping (infer/int t s mapping flag)]
[thn-mapping (infer/int/list/eff t-thn-eff s-thn-eff mapping flag)]
[els-mapping (infer/int/list/eff t-els-eff s-els-eff mapping flag)])
(loop (cdr t-arr) (cdr s-arr)
(U mapping (U (U arg-mapping ret-mapping) (U thn-mapping els-mapping)))))])]))]
;; arrow types - just add a whole bunch of new constraints
#;
[(list (Function: (list (arr: ts t t-rest t-thn-eff t-els-eff) ...))
(Function: (list (arr: ss s s-rest s-thn-eff s-els-eff) ...)))
(=> unmatch)
(define (compatible-rest t-rest s-rest)
(andmap (lambda (x y) (or (and x y) (and (not x) (not y)))) ;; either both #f or both not #f
t-rest s-rest))
(define (U a b) ((table:un flag) a b))
(let-values ([(s-thn-eff s-els-eff) (if (and (null? (car t-thn-eff)) (null? (cdr t-thn-eff))
(null? (car t-els-eff)) (null? (cdr t-els-eff)))
(values (list null) (list null))
(values s-thn-eff s-els-eff))])
(unless (and (= (length ts) (length ss))
(= (length t-thn-eff) (length s-thn-eff))
(= (length t-els-eff) (length s-els-eff))
(compatible-rest t-rest s-rest))
(unmatch))
(let ([arg-mapping (infer/int/list (apply append ts) (apply append ss) mapping (swap flag))]
[ret-mapping (infer/int/list t s mapping flag)]
[thn-mapping (infer/int/list/eff (apply append t-thn-eff) (apply append s-thn-eff) mapping flag)]
[els-mapping (infer/int/list/eff (apply append t-els-eff) (apply append s-els-eff) mapping flag)])
(U (U arg-mapping ret-mapping) (U thn-mapping els-mapping))))]
;; here, we try to handle a case-lambda as the argument to a polymorphic function
[(list (Function: ftys) (and t (Function: (list (arr: ss s s-rest #f s-thn-eff s-els-eff)))))
(=> unmatch)
(when (= 1 (length ftys)) (unmatch)) ;; we should have handled this case already
(or
(ormap
(lambda (fty)
(with-handlers
([exn:infer? (lambda _ #f)])
(infer/int (make-Function (list fty)) t mapping flag)))
ftys)
(fail!))]
[(list (and t (Function: (list (arr: ss s s-rest #f s-thn-eff s-els-eff)))) (Function: ftys))
(=> unmatch)
(when (= 1 (length ftys)) (unmatch)) ;; we should have handled this case already
(or
(ormap
(lambda (fty)
(with-handlers
([exn:infer? (lambda _ #f)])
(infer/int t (make-Function (list fty)) mapping flag)))
ftys)
(fail!))]
;; if t is a union, all of the elements have to match
[(list s (Union: e1))
(infer/int/list (map (lambda (_) s) e1) e1 mapping flag)]
;; if s is a union, we can just try to find one of its elements that works
[(list (Union: e1) t)
(or
(ormap
(lambda (e)
(with-handlers
([exn:infer? (lambda _ #f)])
(infer/int e t mapping flag)))
e1)
(fail!))]
;; otherwise, if we have a {sub,super}type, we're all good
[else (cond [(and (co? flag) (subtype t s)) mapping]
[(and (contra? flag) (subtype s t)) mapping]
;; or, nothing worked, and we fail
[else (fail!)])]
))))
;; infer: Type Type List[Symbol] -> Substitution
(define infer (mk-infer infer/int))
;; infer/list: Listof[Type] Listof[Type] List[Symbol] -> Substitution
(define infer/list (mk-infer infer/int/list))
;(trace infer infer/int/list infer/int infer/list)

View File

@ -9,7 +9,6 @@
"utils.ss" ;; doesn't need tests
"type-rep.ss" ;; doesn't need tests
"unify.ss" ;; needs tests
"infer.ss"
"type-effect-convenience.ss" ;; maybe needs tests
"union.ss"
"subtype.ss" ;; has tests

View File

@ -1,6 +1,6 @@
#lang scheme/base
(require "type-rep.ss" "unify.ss" "union.ss" "infer.ss" "subtype.ss"
(require "type-rep.ss" "unify.ss" "union.ss" "subtype.ss"
"type-utils.ss" "resolve-type.ss" "type-effect-convenience.ss"
mzlib/plt-match mzlib/trace)

View File

@ -12,7 +12,6 @@
"utils.ss" ;; doesn't need tests
"type-rep.ss" ;; doesn't need tests
"unify.ss" ;; needs tests
"infer.ss"
"type-effect-convenience.ss" ;; maybe needs tests
"union.ss"
"subtype.ss" ;; has tests