Added more margin notes
This commit is contained in:
parent
19d7519dfe
commit
7ef4bec534
|
@ -107,6 +107,9 @@ factor 3:
|
|||
(solve-chinese '(2 3 2) '(3 5 7))]
|
||||
}
|
||||
|
||||
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Quadratic_residue"]{Quadratic Residue}}
|
||||
@defproc[(quadratic-residue? [a Integer] [n Integer]) Boolean]{
|
||||
Returns @racket[#t] if @racket[a] is a quadratic residue modulo @racket[n], otherwise @racket[#f].
|
||||
The modulus @racket[n] must be positive, and @racket[a] must be nonnegative.
|
||||
|
@ -123,6 +126,7 @@ In other words, @racket[(quadratic-residue? a n)] is @racket[#t] when
|
|||
(quadratic-residue? 3 4)]
|
||||
}
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Legendre_symbol"]{Legendre Symbol}}
|
||||
@defproc[(quadratic-character [a Integer] [p Integer]) (U -1 0 1)]{
|
||||
Returns the value of the quadratic character modulo the prime @racket[p].
|
||||
That is, for a non-zero @racket[a] the number @racket[1] is returned when
|
||||
|
@ -170,6 +174,7 @@ This function is also known as the @emph{Legendre symbol}.
|
|||
}
|
||||
|
||||
@subsection[#:tag "modular"]{Parameterized Modular Arithmetic}
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Modular_arithmetic"]{Modular Arithmetic}}
|
||||
|
||||
The @racketmodname[math/number-theory] library supports modular arithmetic parameterized on a current
|
||||
modulus. For example, the code
|
||||
|
@ -273,6 +278,7 @@ So the problem isn't that @racket[b] doesn't exist, it's that @racket[b] isn't @
|
|||
@section[#:tag "primes"]{Primes}
|
||||
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Prime_number"]{Prime Number}}
|
||||
@defproc[(prime? [z Integer]) Boolean]{
|
||||
Returns @racket[#t] if @racket[z] is a prime, @racket[#f] otherwise.
|
||||
|
||||
|
@ -346,6 +352,7 @@ Returns list of the next @racket[n] primes smaller than @racket[z]; @racket[n] m
|
|||
(prev-primes 13 4)]
|
||||
}
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Integer_factorization"]{Integer Factorization}}
|
||||
@defproc[(factorize [n Natural]) (Listof (List Natural Natural))]{
|
||||
Returns the factorization of a natural number @racket[n].
|
||||
The factorization consists of a list of corresponding
|
||||
|
@ -397,7 +404,7 @@ Returns a list of the exponents of in a factorization of the integer
|
|||
|
||||
@defproc[(integer-root [n Natural] [m Natural]) Natural]{
|
||||
Returns the @racket[m]th integer root of @racket[n].
|
||||
This is the largest number @racket[r] such that
|
||||
This is the largest integer @racket[r] such that
|
||||
@racket[(expt r m) <= n].
|
||||
|
||||
@interaction[#:eval untyped-eval
|
||||
|
@ -443,6 +450,7 @@ is returned, otherwise @racket[#f] is returned.
|
|||
}
|
||||
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Perfect_power"]{Perfect Power}}
|
||||
@defproc[(perfect-power? [m Integer]) Boolean]{
|
||||
Returns @racket[#t] if @racket[m] is a perfect power,
|
||||
otherwise @racket[#f].
|
||||
|
@ -613,6 +621,7 @@ Otherwise 0 is returned.
|
|||
(map (λ (n) (fibonacci/mod n 5)) (range 10))]
|
||||
}
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Farey_sequence"]{Farey Sequence}}
|
||||
@defproc[(farey [n Integer]) (Listof Exact-Rational)]{
|
||||
Returns a list of the numbers in the @racket[n]th Farey sequence; @racket[n] must be positive.
|
||||
|
||||
|
@ -639,6 +648,7 @@ Returns the @racket[n]th tangent number; @racket[n] must be nonnegative.
|
|||
@; ----------------------------------------
|
||||
@section[#:tag "combinatorics"]{Combinatorics}
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Factorial"]{Factorial}}
|
||||
@defproc[(factorial [n Integer]) Natural]{
|
||||
Returns the factorial of @racket[n], which must be nonnegative.
|
||||
The factorial of @racket[n] is the number @racket[(* n (- n 1) (- n 2) ... 1)].
|
||||
|
@ -647,6 +657,7 @@ Returns the @racket[n]th tangent number; @racket[n] must be nonnegative.
|
|||
(factorial 0)]
|
||||
}
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Binomial_coefficient"]{Binomial Coefficient}}
|
||||
@defproc[(binomial [n Integer] [k Integer]) Natural]{
|
||||
Returns the number of ways to choose a @italic{set} of @racket[k] items from a set of
|
||||
@racket[n] items; i.e. the order of the @racket[k] items is not significant.
|
||||
|
@ -659,6 +670,9 @@ Returns the @racket[n]th tangent number; @racket[n] must be nonnegative.
|
|||
(binomial 5 3)]
|
||||
}
|
||||
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Permutation#Permutations_in_combinatorics"]{
|
||||
Permutations}}
|
||||
@defproc[(permutations [n Integer] [k Integer]) Natural]{
|
||||
Returns the number of ways to choose a @italic{sequence} of @racket[k] items from a set of
|
||||
@racket[n] items; i.e. the order of the @racket[k] items is significant.
|
||||
|
@ -670,6 +684,7 @@ Returns the @racket[n]th tangent number; @racket[n] must be nonnegative.
|
|||
(permutations 5 3)]
|
||||
}
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients"]{Multinomial Coeffecient}}
|
||||
@defproc[(multinomial [n Integer] [ks (Listof Integer)]) Natural]{
|
||||
A generalization of @racket[binomial] to multiple sets of choices; i.e.
|
||||
@racket[(multinomial n (list k0 k1))] is the number of ways to choose a set of @racket[k0] items
|
||||
|
@ -698,6 +713,7 @@ Returns the @racket[n]th tangent number; @racket[n] must be nonnegative.
|
|||
|
||||
@subsection{Polygonal Numbers}
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Polygonal_number"]{Polygonal Number}}
|
||||
@deftogether[
|
||||
(@defproc[(triangle-number? [n Natural]) Boolean]
|
||||
@defproc[(square-number? [n Natural]) Boolean]
|
||||
|
@ -724,6 +740,7 @@ of the corresponding type of polygonal number.
|
|||
|
||||
@; ----------------------------------------
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Mediant_(mathematics)"]{Mediant}}
|
||||
@section[#:tag "fractions"]{Fractions}
|
||||
@defproc[(mediant [x Exact-Rational] [y Exact-Rational]) Exact-Rational]{
|
||||
Computes the @racket[mediant] of the numbers @racket[x] and @racket[y].
|
||||
|
@ -765,6 +782,8 @@ Returns a list of all natural solutions to the equation @math-style{a x^2 + b x
|
|||
@; ----------------------------------------
|
||||
@section[#:tag "primitive_roots"]{The group Zn and Primitive Roots}
|
||||
|
||||
@margin-note{Wikipedia: @hyperlink["http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n"]{
|
||||
The Group Zn}}
|
||||
The numbers @math-style{0, 1, ..., n-1} with addition and multiplication
|
||||
modulo @racket[n] is a ring called @math-style{Zn}.
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user