added heaps and splay-trees (need docs, tests)

This commit is contained in:
Ryan Culpepper 2010-09-10 17:42:34 -06:00
parent af4a545dc3
commit ac8ca8e193
2 changed files with 674 additions and 0 deletions

177
collects/data/heap.rkt Normal file
View File

@ -0,0 +1,177 @@
#lang racket/base
(require racket/vector
racket/match)
(define MIN-SIZE 4)
(define-struct heap (vec size <=?) #:mutable)
;; length(vec)/4 <= size <= length(vec)
;; size = next available index
;; A VT is a binary tree represented as a vector.
;; VT Index functions
(define (vt-root) 0)
(define (vt-parent n) (quotient (sub1 n) 2))
(define (vt-leftchild n) (+ (* n 2) 1))
(define (vt-rightchild n) (+ (* n 2) 2))
(define (vt-root? n) (zero? n))
(define (vt-leftchild? n) (odd? n))
(define (vt-rightchild? n) (even? n))
;; Operations
(define (heapify-up <=? vec n)
(unless (vt-root? n)
(let* ([parent (vt-parent n)]
[n-key (vector-ref vec n)]
[parent-key (vector-ref vec parent)])
(unless (<=? parent-key n-key)
(vector-set! vec parent n-key)
(vector-set! vec n parent-key)
(heapify-up vec parent)))))
(define (heapify-down <=? vec n size)
(let ([left (vt-leftchild n)]
[right (vt-rightchild n)]
[n-key (vector-ref vec n)])
(when (< left size)
(let ([left-key (vector-ref vec left)])
(let-values ([(child child-key)
(if (< right size)
(let ([right-key (vector-ref vec right)])
(if (<=? left-key right-key)
(values left left-key)
(values right right-key)))
(values left left-key))])
(unless (<=? n-key child-key)
(vector-set! vec n child-key)
(vector-set! vec child n-key)
(heapify-down vec child size)))))))
(define (subheap? <=? vec n size)
(let ([left (vt-leftchild n)]
[right (vt-rightchild n)])
(and (if (< left size)
(<=? (vector-ref vec n) (vector-ref vec left))
#t)
(if (< right size)
(<=? (vector-ref vec n) (vector-ref vec right))
#t))))
(define (grow-vector v1)
(let ([v2 (make-vector (* (vector-length v1) 2) #f)])
(vector-copy! v2 0 v1 0)
v2))
(define (shrink-vector v1)
(let ([v2 (make-vector (quotient (vector-length v1) 2) #f)])
(vector-copy! v2 0 v1 0 (vector-length v2))
v2))
;; Heaps
(define make-heap*
(let ([make-heap
(lambda (<=?) (make-heap (make-vector MIN-SIZE #f) 0 <=?))])
make-heap))
(define (vector->heap <=? vec0 [start 0] [end (vector-length vec0)])
(define size (- end start))
(define len (let loop ([len MIN-SIZE]) (if (<= size len) len (loop (* 2 len)))))
(define vec (make-vector len #f))
;; size <= length(vec)
(vector-copy! vec 0 vec0 start end)
(for ([n (in-range (sub1 size) -1 -1)])
(heapify-down <=? vec n size))
(make-heap vec size <=?))
(define (heap-copy h)
(match h
[(heap vec count <=?)
(make-heap (vector-copy vec) count <=?)]))
(define (heap-add! h . keys)
(heap-add-all! h (list->vector keys)))
(define (heap-add-all! h keys)
(let ([keys (if (list? keys) (list->vector keys) keys)])
(match h
[(heap vec size <=?)
(let* ([new-size (+ size (vector-length keys))]
[vec (if (> new-size (vector-length vec))
(let ([vec (grow-vector vec new-size)])
(set-heap-vec! h vec)
vec)
vec)])
(vector-copy! vec size keys 0)
(for ([n (in-range size new-size)])
(heapify-up <=? vec n))
(set-heap-size! h new-size))])))
(define (heap-min h)
(match h
[(heap vec size <=?)
(when (zero? size)
(error 'heap-min "empty heap"))
(vector-ref vec 0)]))
(define (heap-remove-min! h)
(match h
[(heap vec size <+?)
(when (zero? size)
(error 'heap-remove-min! "empty heap"))
(heap-remove-index! h 0)]))
(define (heap-remove-index! h index)
(match h
[(heap vec size <=?)
(unless (< index size)
(if (zero? size)
(error 'heap-remove-index!
"index out of bounds (empty heap): ~s" index)
(error 'heap-remove-index!
"index out of bounds [0,~s]: ~s" (sub1 size) index)))
(vector-set! vec index (vector-ref vec (sub1 size)))
(vector-set! vec (sub1 size) #f)
(heapify-down <=? vec index (sub1 size))
(when (< MIN-SIZE size (quotient (vector-length vec) 4))
(set-heap-vec! h (shrink-vector vec)))
(set-heap-size! h (sub1 size))]))
(define (in-heap h)
(in-heap/consume! (heap-copy h)))
(define (in-heap/consume! h)
(lambda ()
(values (lambda () (heap-min h))
(lambda () (heap-remove-min! h) #t)
#t
(lambda (_) (> (heap-count h) 0))
(lambda _ #t)
(lambda _ #t))))
(provide/contract
[make-heap (-> (-> any/c any/c any/c) heap?)]
[heap? (-> any/c boolean?)]
[heap-size (-> heap? exact-nonnegative-integer?)]
[heap-copy (-> heap? heap?)]
[vector->heap (-> (-> any/c any/c any/c) vector? heap?)]
[heap-add! (->* (heap?) () #:rest list? void?)]
[heap-add-all! (-> heap? (or/c list? vector?) void?)]
[heap-min (-> heap? any/c)]
[heap-remove-min! (-> heap? void?)]
[in-heap (-> heap? sequence?)])
#|
;; Testing
(vector->heap #(3 65 3 54 3 2 1 4 6))
(define h
(vector->heap #(3 65 3 3 2 1)))
|#

View File

@ -0,0 +1,497 @@
#lang racket/base
(require racket/match
racket/dict
racket/contract)
;; FIXME: need special handling of +/- inf.0 ! (otherwise, other keys get killed)
;; Idea: in traversal, just treat +/-inf.0 as 0 for key-adjustment.
;; ======== Raw splay tree ========
(struct node (key value left right) #:mutable #:transparent)
#|
Bottom-up, zero-allocation splay
The following notes sketch the derivation from the naive bottom-up
splay algorithm.
====
SplayPath = null | (cons (Side,Node) SplayPath)
In a SplayPath [...,(s1,n1),(s2,n2),...], then n1 = n2.s2.
find : ... -> (Node, SplayPath)
If find returns (s,x,[(s1,n1),...]), then x = n1.s1.
splay : (Node, SplayPath) -> Node
splayloop : (Node, SplayPath) -> (Node, SplayPath)
====
We always splay after find, so let's have find immediately call
isplay (incremental splay) with just the new part of the splay
path. But we can only splay when we have *two* splay path segments to
work with.
SplayPathBuf = Maybe (Side, Node)
find' : ... -> (Node, SplayPathBuf)
find' ... = ... isplay (find' ..., localSide, localNode) ...
isplay : ((Node, SplayPathBuf), Side, Node) -> (Node, SplayPathBuf)
And at the top there needs to be a finish function to handle
zigs (odd-length SplayPaths => non-None final SplayPathBufs).
finish : (Node, SplayPathBuf) -> Node
====
Actually, find returns Maybe Node. But we still want to splay the path
and produce a new root, even if find failed. So if find'' initially
returns None, isplay' takes the last node seen, sets that as the new
root, and continues splaying. We introduce a status result that
indicates whether the new root was actually the node sought (we also
distinguish found vs added.)
Status = Found | Added | Failed
find'' : ... -> (Status, Maybe Node, SplayPathBuf)
isplay : ((Status, Maybe Node, SplayPathBuf), Side, Node) -> (Status, Node, SplayPathBuf)
finish' : (Status, Maybe Node, SplayPathBuf) -> (Status, Maybe Node)
Note that isplay always returns a Node, never None (I'm taking some
type liberties here). Of course, if the initial tree is empty, isplay
is not called.
====
To avoid allocation, we flatten the types above and use multiple value
return.
<SPB> = (Maybe Side) (Maybe Node)
SP = (values Status (Maybe Node) <SPB>)
= (values Status (Maybe Node) (Maybe Side) (Maybe Node))
In (values status nroot pside pnode):
nroot is the new root (or #f)
if pside and pnode are both non-#f,
pnode is next node in splay path, overrides nroot as new root IF nroot = #f
if pside and pnode are both #f,
no pending rotation; add it and keep going...
|#
(define-syntax-rule (SPfinish expr)
(let-values ([(tx ok? x p-side p) expr])
(finish tx ok? x p-side p)))
(define-syntax-rule (SPisplay x-expr gp-side gp)
(let-values ([(tx ok? x p-side p) x-expr])
(isplay! tx ok? x p-side p gp-side gp)))
(define (SPunit tx x) (values tx 'found x #f #f))
(define (SPunit/add tx x) (values tx 'added x #f #f))
(define (SPfail tx) (values tx #f #f #f #f))
;; --------
;; find/root : ... -> (values boolean node/#f)
;; If ok?, then node returned is one sought.
(define (find/root cmp tx k x add-v)
(SPfinish (find cmp tx k x #f #f add-v)))
;; find : ... -> SP
(define (find cmp tx k x p-side p add-v)
(cond [x
(let ([k* (if tx (- k (node-key x)) k)])
(case (cmp k (node-key x))
((=) (SPunit tx x))
((<) (SPisplay (find cmp tx k* (node-left x) 'left x add-v) 'left x))
((>) (SPisplay (find cmp tx k* (node-right x) 'right x add-v) 'right x))))]
[add-v
(let ([new-node (node k (car add-v) #f #f)])
;; link unnecessary? will be done in isplay/finish?
(when p (set-node-side! p p-side new-node))
(SPunit/add tx new-node))]
[else (SPfail tx)]))
;; isplay! : ... -> node
;; incremental splay
(define (isplay! tx ok? x p-side p gp-side gp)
;; (printf "splay! ~s\n" (list x p-side p gp-side gp))
(cond [(eq? x #f)
;; Then p-side = #f, p = #f
;; Overwrite new root with gp
(values tx ok? gp #f #f)]
[p-side ;; we have two splay path segments; splay
;; First, link x as p.p-side
(set-node-side! p p-side x)
(cond [(eq? p-side gp-side)
;; zig-zig
(rotate! tx gp gp-side)
(rotate! tx p p-side)
(values tx ok? x #f #f)]
[else
;; zig-zag
(rotate! tx p p-side)
(rotate! tx gp gp-side)
(values tx ok? x #f #f)])]
[else
(values tx ok? x gp-side gp)]))
(define (finish tx ok? x p-side p)
(printf "run ~s\n" (list x p-side p))
(cond [(eq? x #f)
;; Then p-side = #f, p = #f
(values ok? #f)]
[p-side ;; one splay segment left; perform zig
;; First, link x as p.p-side
(set-node-side! p p-side x)
(rotate! tx p p-side)
(values ok? x)]
[else ;; no splay segments left
(values ok? x)]))
(define (set-node-side! n side v)
(case side
((left) (set-node-left! n v))
((right) (set-node-right! n v))))
(define (rotate! tx x side)
(case side
((left) (right! tx x))
((right) (left! tx x))
((#f) (void))))
(define (right! tx p)
(match p
[(node Kp _ (and x (node Kx _ A B)) C)
(set-node-left! p B)
(set-node-right! x p)
(when tx
(set-node-key! p (- 0 Kx))
(set-node-key! x (+ Kp Kx))
(when B
(set-node-key! B (+ (node-key B) Kx))))
(sanity! tx 'right x)]))
(define (left! tx p)
(match p
[(node Kp _ A (and x (node Kx _ B C)))
(set-node-right! p B)
(set-node-left! x p)
(when tx
(set-node-key! p (- 0 Kx))
(set-node-key! x (+ Kp Kx))
(when B
(set-node-key! B (+ (node-key B) Kx))))
(sanity! tx 'left x)]))
(define (sanity! tx who x0)
(when tx
(let loop ([x x0] [sign? void])
(when (node? x)
(unless (sign? (node-key x))
(printf "x0 = ~s\n" x0)
(error 'insane! "~s: insane sub-node ~s" who x))
(loop (node-left x) negative?)
(loop (node-right x) positive?)))))
;; --------
;; if left is node, new root is max(left)
(define (join-left tx left right)
(cond [(and left right)
(let-values ([(_ok? left*) (find-max tx left)])
;; left* is node, must have empty right branch
(set-node-right! left* right)
(when tx
(set-node-key! right (- (node-key right) (node-key left*))))
left*)]
[left left]
[else right]))
;; if right is node, new root is min(right)
(define (join-right tx left right)
(cond [(and left right)
(let-values ([(_ok? right*) (find-min tx right)])
;; right* is node, right*.left = #f
(set-node-left! right* left)
(when tx
(set-node-key! left (- (node-key left) (node-key right*))))
right*)]
[right right]
[else left]))
(define (split/drop-root tx root)
(let ([left (node-left root)]
[right (node-right root)])
(when tx
(when left
(set-node-key! left (+ (node-key left) (node-key root))))
(when right
(set-node-key! right (+ (node-key right) (node-key root)))))
(values left right)))
(define (split/root-to-left tx root)
(let ([right (node-right root)])
(when (and tx right)
(set-node-key! right (+ (node-key right) (node-key root))))
(set-node-right! root #f)
(values root right)))
(define (split/root-to-right tx root)
(let ([left (node-left root)])
(when (and tx left)
(set-node-key! left (+ (node-key left) (node-key root))))
(set-node-left! root #f)
(values left root)))
(define (delete-root tx root)
(let-values ([(left right) (split/drop-root tx root)])
(join-left tx left right)))
(define (find-min tx x)
(define (find-min-loop x)
(cond [(and x (node-left x))
(SPisplay (find-min-loop (node-left x)) 'left x)]
[x (SPunit tx x)]
[else (SPfail tx)]))
(SPfinish (find-min-loop x)))
(define (find-max tx x)
(define (find-max-loop x)
(cond [(and x (node-right x))
(SPisplay (find-max-loop (node-right x)) 'right x)]
[x (SPunit tx x)]
[else (SPfail tx)]))
(SPfinish (find-max-loop x)))
(define (contract! cmp tx root from to)
;; tx = #t... why pass as param?
(let*-values ([(ok? from-node) (find/root cmp tx root from (list #f))]
[(left-tree right-tree)
(if (eq? ok? 'added)
(split/drop-root tx from-node)
(split/root-to-right tx from-node))]
[(ok? to-node) (find/root cmp tx right-tree to (list #f))]
[(mid-tree right-tree)
(if (eq? ok? 'added)
(split/drop-root tx to-node)
(split/root-to-right tx to-node))])
(when tx ;; ie, #t
(when right-tree
(set-node-key! right-tree (+ (node-key right-tree) (- from to)))))
(join-left tx left-tree right-tree)))
(define (expand! cmp tx root from to)
(let*-values ([(ok? from-node) (find/root cmp tx root from (list #f))]
[(left-tree right-tree)
(if (eq? ok? 'added)
(split/drop-root tx from-node)
(split/root-to-right tx from-node))])
(when tx ;; ie, #t
(when right-tree
(set-node-key! right-tree (+ (node-key right-tree) (- to from)))))
(join-left tx left-tree right-tree)))
(define (find-prev tx root)
;; PRE: root is node and root.left is node; ie, has-prev?
(let-values ([(left right) (split/root-to-right tx root)])
;; join-left does max(left)
(join-left tx left right)))
(define (find-next tx root)
;; PRE: root is node and root.right is node; ie, has-next?
(let-values ([(left right) (split/root-to-left tx root)])
;; join-right does min(right)
(join-right tx left right)))
(define (has-prev? x) (and x (node-left x) #t))
(define (has-next? x) (and x (node-right x) #t))
;; ======== Splay tree ========
(define make-splay-tree*
(let ([make-splay-tree
(lambda (<? =?)
(splay-tree #f
(lambda (x y) (if (=? x y) '= (if (<? x y) '< '>)))
#f))])
make-splay-tree))
#|
In a numeric splay tree, keys can be stored relative to their parent nodes.
Only if requested, though; otherwise, lots of pointless arithmetic.
|#
(define (make-numeric-splay-tree [tx #f])
(splay-tree #f 0 (lambda (x y) (if (= x y) '= (if (< x y) '< '>))) tx))
(define not-given (gensym 'not-given))
(define (splay-tree-ref s x [default not-given])
(match s
[(splay-tree root size cmp tx)
(let-values ([(ok? root) (find/root cmp tx x root #f)])
(set-splay-tree-root! s root)
(if ok?
(node-value root)
(cond [(eq? default not-given)
(error 'splay-tree-ref "no value found for key: ~e" x)]
[(procedure? default)
(default)]
[else default])))]))
(define (splay-tree-set! s x v)
(match s
[(splay-tree root size cmp tx)
(let-values ([(ok? root) (find/root cmp tx x root (list v))])
(set-splay-tree-root! s root)
(when (eq? ok? 'added) (set-splay-tree-size! s (add1 size)))
(printf "root = ~s\n" root)
(unless (eq? (node-value root) v)
(set-node-value! root v)))]))
(define (splay-tree-remove! s x)
(match s
[(splay-tree root size cmp tx)
(let-values ([(ok? root) (find/root cmp tx x root #f)])
(when ok? ;; => root is node
(set-splay-tree-root! s (delete-root tx root))
(set-splay-tree-size! s (sub1 size))))]))
(define (splay-tree-count s)
(splay-tree-size s))
#|
Iteration in splay-trees is problematic.
- any access to the splay-tree disturbs most notions of "position"
(other dictionaries, eg hashes, are only disturbed by *updates*)
- parent-relative keys need parent chain to be interpreted
- sequential iteration is worst for splaying (leaves as linear tree)
Options
1) position = parent chain (very likely to get out of sync)
2) position = key (re-lookup each time)
3) snapshot as alist (more allocation than necessary, sometimes much more)
(1) is no good. (3) is not very iterator-like.
(2) seems to be the best compromise.
|#
(struct splay-tree-iter (key))
(define (splay-tree-iterate-first s)
(match s
[(splay-tree root size cmp tx)
(let-values ([(ok? root) (find-min tx root)])
(set-splay-tree-root! s root)
(if ok? (splay-tree-iter (node-key root)) #f))]))
(define (splay-tree-iterate-next s pos)
(match pos
[(splay-tree-iter key)
(let ([next (splay-tree-least-key/>? s key not-given)])
(if (eq? next not-given)
#f
(splay-tree-iter next)))]))
(define (splay-tree-iterate-key s pos)
(match pos
[(splay-tree-iter key) key]))
(define (splay-tree-iterate-value s pos)
(match pos
[(splay-tree-iter key)
(splay-tree-ref s key #f)]))
(struct splay-tree ([root #:mutable] [size #:mutable] cmp tx)
#:transparent
#:property prop:dict
(vector splay-tree-ref
splay-tree-set!
#f ;; set
splay-tree-remove!
#f ;; remove
splay-tree-count
splay-tree-iterate-first
splay-tree-iterate-next
splay-tree-iterate-key
splay-tree-iterate-value))
;; Order-based search
(define (extreme who s key cmp-result has-X? find-X default)
(match s
[(splay-tree root size cmp tx)
(let*-values ([(_ok? root) (find/root cmp tx key root #f)]
[(ok? root)
(cond [(and root (memq (cmp (node-key root) key) cmp-result))
(values #t root)]
[(has-X? root)
(values #t (find-X tx root))]
[else
(values #f root)])])
(set-splay-tree-root! s root)
(if ok?
(node-key root)
(cond [(eq? default not-given)
(error who "no key found ~a than~a ~e"
(if (memq '< cmp-result) "less" "greater")
(if (memq '= cmp-result) " or equal to" "")
key)]
[(procedure? default) (default)]
[else default])))]))
(define (splay-tree-greatest-key/<=? s key [default not-given])
(extreme 'splay-tree-greatest-key/<=? s key '(< =) has-prev? find-prev default))
(define (splay-tree-greatest-key/<? s key [default not-given])
(extreme 'splay-tree-greatest-key/<? s key '(<) has-prev? find-prev default))
(define (splay-tree-least-key/>=? s key [default not-given])
(extreme 'splay-tree-least-key/>=? s key '(> =) has-next? find-next default))
(define (splay-tree-least-key/>? s key [default not-given])
(extreme 'splay-tree-least-key/>? s key '(>) has-next? find-next default))
;; ========
;; snapshot
(define (splay-tree->list s)
(match s
[(splay-tree root size cmp tx)
(let loop ([x root] [onto null] [k* (if tx 0 #f)])
(match x
[(node key value left right)
(let ([key (if tx (+ key k*) key)])
(loop left
(cons (cons key value)
(loop right onto key))
key))]
[#f onto]))]))
;; ========
(provide/contract
[make-numeric-splay-tree (->* () (any/c) splay-tree?)]
[splay-tree? (-> any/c boolean?)]
[splay-tree-ref (->* (splay-tree? any/c) (any/c) any/c)]
[splay-tree-set! (-> splay-tree? any/c any/c void?)]
[splay-tree-remove! (-> splay-tree? any/c void?)]
[splay-tree-count (-> splay-tree? exact-nonnegative-integer?)]
[splay-tree->list (-> splay-tree? (listof (cons/c any/c any/c)))]
[splay-tree-greatest-key/<=?
(->* (splay-tree? any/c) (any/c) any/c)]
[splay-tree-greatest-key/<?
(->* (splay-tree? any/c) (any/c) any/c)]
[splay-tree-least-key/>=?
(->* (splay-tree? any/c) (any/c) any/c)]
[splay-tree-least-key/>?
(->* (splay-tree? any/c) (any/c) any/c)])