diff --git a/collects/scribblings/reference/numbers.scrbl b/collects/scribblings/reference/numbers.scrbl index e400b2ea64..18ae95f203 100644 --- a/collects/scribblings/reference/numbers.scrbl +++ b/collects/scribblings/reference/numbers.scrbl @@ -18,9 +18,9 @@ All @deftech{numbers} are @deftech{complex numbers}. Some of them are @deftech{real numbers}, and all of the real numbers that can be represented are also @deftech{rational numbers}, except for -@as-index{@racket[+inf.0]} and @as-index{@racket[+inf.f]} (positive @as-index{infinity}), -@as-index{@racket[-inf.0]} an @as-index{@racket[-inf.f]} (negative infinity), and -@as-index{@racket[+nan.0]} and @as-index{@racket[+nan.f]} (@as-index{not-a-number}). Among the +@as-index{@racket[+inf.0]} (positive @as-index{infinity}), @as-index{@racket[+inf.f]} (single-precision variant), +@as-index{@racket[-inf.0]} (negative infinity), @as-index{@racket[-inf.f]} (single-precision variant), +@as-index{@racket[+nan.0]} (@as-index{not-a-number}), and @as-index{@racket[+nan.f]} (single-precision variant). Among the rational numbers, some are @deftech{integers}, because @racket[round] applied to the number produces the same number. @@ -54,8 +54,8 @@ numbers). In particular, adding, multiplying, subtracting, and dividing exact numbers always produces an exact result. Inexact numbers can be coerced to exact form, except for the inexact -numbers @racket[+inf.0] (double-precision), @racket[+inf.f] (single-precision), -@racket[-inf.0], @racket[-inf.f], @racket[+nan.0], and @racket[+nan.f] which +numbers @racket[+inf.0], @racket[+inf.f], +@racket[-inf.0], @racket[-inf.f], @racket[+nan.0], and @racket[+nan.f], which have no exact form. @index["division by inexact zero"]{Dividing} a number by exact zero raises an exception; dividing a non-zero number other than @racket[+nan.0] or @racket[+nan.f] by an inexact zero returns @racket[+inf.0], @@ -65,14 +65,14 @@ or @racket[-inf.f], depending on the sign and precision of the dividend. The is @racket[eqv?] to itself, and @racket[+nan.f] is similarly @racket[eqv?] but not @racket[=] to itself. Conversely, @racket[(= 0.0 -0.0)] is @racket[#t], but @racket[(eqv? 0.0 -0.0)] is @racket[#f], and the -same for @racket[0.0f0] and @racket[-0.0f0]. The datum +same for @racket[0.0f0] and @racket[-0.0f0] (which are single-precision variants). The datum @racketvalfont{-nan.0} refers to the same constant as @racket[+nan.0], -and @racketvalfont{-nan.f} is the same as @racket[+nan.f], +and @racketvalfont{-nan.f} is the same as @racket[+nan.f]. Calculations with infinites produce results consistent with IEEE -double-precision floating point where IEEE specifies the result; in -cases where IEEE provides no specification (e.g., @racket[(angle -+inf.0+inf.0i)]), the result corresponds to the limit approaching +double- or single-precision floating point where IEEE specifies the result; in +cases where IEEE provides no specification, such as @racket[(angle ++inf.0+inf.0i)], the result corresponds to the limit approaching infinity, or @racket[+nan.0] or @racket[+nan.f] if no such limit exists. A @deftech{fixnum} is an exact integer whose two's complement