Mention that the Von Mangoldt function is not multiplicative
This commit is contained in:
parent
8f238fe9e2
commit
b7d2722d7d
|
@ -517,9 +517,9 @@ square, otherwise @racket[#f].
|
||||||
}
|
}
|
||||||
|
|
||||||
@; ----------------------------------------
|
@; ----------------------------------------
|
||||||
@section[#:tag "multiplicative"]{Multiplicative Functions}
|
@section[#:tag "multiplicative"]{Multiplicative and Arithmetic Functions}
|
||||||
|
|
||||||
The functions in this section are @deftech{multiplicative}.
|
The functions in this section are @deftech{multiplicative} (with exception of the Von Mangoldt function).
|
||||||
In number theory, a multiplicative function is a function @racket[f] such that
|
In number theory, a multiplicative function is a function @racket[f] such that
|
||||||
@racket[(f (* a b)) = (* (f a) (f b))] for all coprime natural numbers @racket[a] and @racket[b].
|
@racket[(f (* a b)) = (* (f a) (f b))] for all coprime natural numbers @racket[a] and @racket[b].
|
||||||
|
|
||||||
|
@ -573,6 +573,8 @@ The von Mangoldt function.
|
||||||
If @racket[n=p^k] for a prime @racket[p] and an integer @racket[k>=1] then @racket[(log n)] is returned.
|
If @racket[n=p^k] for a prime @racket[p] and an integer @racket[k>=1] then @racket[(log n)] is returned.
|
||||||
Otherwise 0 is returned.
|
Otherwise 0 is returned.
|
||||||
|
|
||||||
|
Note: The Von Mangoldt function is not multiplicative.
|
||||||
|
|
||||||
@interaction[#:eval untyped-eval
|
@interaction[#:eval untyped-eval
|
||||||
(mangoldt-lambda (* 3 3))
|
(mangoldt-lambda (* 3 3))
|
||||||
(log 3)]
|
(log 3)]
|
||||||
|
|
Loading…
Reference in New Issue
Block a user