Mention that the Von Mangoldt function is not multiplicative

This commit is contained in:
Jens Axel Søgaard 2014-11-08 14:10:10 +01:00
parent 8f238fe9e2
commit b7d2722d7d

View File

@ -517,9 +517,9 @@ square, otherwise @racket[#f].
}
@; ----------------------------------------
@section[#:tag "multiplicative"]{Multiplicative Functions}
@section[#:tag "multiplicative"]{Multiplicative and Arithmetic Functions}
The functions in this section are @deftech{multiplicative}.
The functions in this section are @deftech{multiplicative} (with exception of the Von Mangoldt function).
In number theory, a multiplicative function is a function @racket[f] such that
@racket[(f (* a b)) = (* (f a) (f b))] for all coprime natural numbers @racket[a] and @racket[b].
@ -573,6 +573,8 @@ The von Mangoldt function.
If @racket[n=p^k] for a prime @racket[p] and an integer @racket[k>=1] then @racket[(log n)] is returned.
Otherwise 0 is returned.
Note: The Von Mangoldt function is not multiplicative.
@interaction[#:eval untyped-eval
(mangoldt-lambda (* 3 3))
(log 3)]