pruned unstable/function

This commit is contained in:
Ryan Culpepper 2011-12-17 22:12:34 -07:00
parent e4e89b0bc9
commit bc7401d4d9
3 changed files with 57 additions and 584 deletions

View File

@ -2,21 +2,9 @@
(require rackunit rackunit/text-ui unstable/function
"helpers.rkt")
(define list/kw (make-keyword-procedure list))
(run-tests
(test-suite "function.rkt"
(test-suite "Simple Functions"
(test-suite "thunk"
(test-case "unique symbol"
(let* ([count 0]
[f (thunk (set! count (+ count 1)) count)])
(check = count 0)
(check = (f) 1)
(check = count 1)))))
(test-suite "Higher Order Predicates"
(test-suite "conjoin"
@ -38,96 +26,4 @@
(check-true ((disjoin integer? exact?) 1/2)))
(test-case "false"
(check-false ((disjoin integer? exact?) 0.5)))))
(test-suite "Currying and (Partial) Application"
(test-suite "call"
(test-case "string-append"
(check-equal? (call string-append "a" "b" "c") "abc")))
(test-suite "papply"
(test-case "list"
(check-equal? ((papply list 1 2) 3 4) (list 1 2 3 4)))
(test-case "sort"
(check-equal?
((papply sort '((1 a) (4 d) (2 b) (3 c)) #:cache-keys? #f)
< #:key car)
'((1 a) (2 b) (3 c) (4 d)))))
(test-suite "papplyr"
(test-case "list"
(check-equal? ((papplyr list 1 2) 3 4) (list 3 4 1 2)))
(test-case "sort"
(check-equal?
((papplyr sort < #:key car)
'((1 a) (4 d) (2 b) (3 c)) #:cache-keys? #f)
'((1 a) (2 b) (3 c) (4 d)))))
(test-suite "curryn"
(test-case "1"
(check-equal? (curryn 0 list/kw 1) '(() () 1)))
(test-case "1 / 2"
(check-equal? ((curryn 1 list/kw 1) 2) '(() () 1 2)))
(test-case "1 / 2 / 3"
(check-equal? (((curryn 2 list/kw 1) 2) 3) '(() () 1 2 3)))
(test-case "1 a"
(check-equal? (curryn 0 list/kw 1 #:a "a")
'((#:a) ("a") 1)))
(test-case "1 a / 2 b"
(check-equal? ((curryn 1 list/kw 1 #:a "a") 2 #:b "b")
'((#:a #:b) ("a" "b") 1 2)))
(test-case "1 a / 2 b / 3 c"
(check-equal? (((curryn 2 list/kw 1 #:a "a") 2 #:b "b") 3 #:c "c")
'((#:a #:b #:c) ("a" "b" "c") 1 2 3))))
(test-suite "currynr"
(test-case "1"
(check-equal? (currynr 0 list/kw 1) '(() () 1)))
(test-case "1 / 2"
(check-equal? ((currynr 1 list/kw 1) 2) '(() () 2 1)))
(test-case "1 / 2 / 3"
(check-equal? (((currynr 2 list/kw 1) 2) 3) '(() () 3 2 1)))
(test-case "1 a"
(check-equal? (currynr 0 list/kw 1 #:a "a")
'((#:a) ("a") 1)))
(test-case "1 a / 2 b"
(check-equal? ((currynr 1 list/kw 1 #:a "a") 2 #:b "b")
'((#:a #:b) ("a" "b") 2 1)))
(test-case "1 a / 2 b / 3 c"
(check-equal? (((currynr 2 list/kw 1 #:a "a") 2 #:b "b") 3 #:c "c")
'((#:a #:b #:c) ("a" "b" "c") 3 2 1)))))
(test-suite "Eta Expansion"
(test-suite "eta"
(test-ok (define f (eta g))
(define g add1)
(check-equal? (f 1) 2)))
(test-suite "eta*"
(test-ok (define f (eta* g x))
(define g add1)
(check-equal? (f 1) 2))
(test-bad (define f (eta* g x))
(define g list)
(f 1 2))))
(test-suite "Parameter Arguments"
(test-suite "lambda/parameter"
(test-case "provided"
(let* ([p (make-parameter 0)])
(check = ((lambda/parameter ([x #:param p]) x) 1) 1)))
(test-case "not provided"
(let* ([p (make-parameter 0)])
(check = ((lambda/parameter ([x #:param p]) x)) 0)))
(test-case "argument order / provided"
(let* ([p (make-parameter 3)])
(check-equal? ((lambda/parameter (x [y 2] [z #:param p])
(list x y z))
4 5 6)
(list 4 5 6))))
(test-case "argument order / not provided"
(let* ([p (make-parameter 3)])
(check-equal? ((lambda/parameter (x [y 2] [z #:param p])
(list x y z))
1)
(list 1 2 3))))))))
))

View File

@ -1,12 +1,65 @@
#lang racket/base
(require racket/match
(for-syntax racket/base racket/list))
(provide conjoin
disjoin)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; HIGHER ORDER TOOLS
;; Higher-Order Boolean Operations
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ryanc: adjusted limit of inner cases from 8 to 2
;; All uses so far seem to be predicates, so more cases seem
;; unnecessary. Also, all uses so far are first-order, so
;; outer case-lambda* might be better replaced with macro.
(define conjoin
(case-lambda*
[(f ... 8)
(make-intermediate-procedure
'conjoined
[(x (... ...) 2) (and (f x (... ...)) ...)]
[xs (and (apply f xs) ...)]
#:keyword
[(keys vals . args)
(and (keyword-apply f keys vals args) ...)])]
[fs
(make-intermediate-procedure
'conjoined
[(x ... 2) (andmap (lambda (f) (f x ...)) fs)]
[xs (andmap (lambda (f) (apply f xs)) fs)]
#:keyword
[(keys vals . args)
(andmap (lambda (f) (keyword-apply f keys vals args)) fs)])]))
(define disjoin
(case-lambda*
[(f ... 8)
(make-intermediate-procedure
'disjoined
[(x (... ...) 2) (or (f x (... ...)) ...)]
[xs (or (apply f xs) ...)]
#:keyword
[(keys vals . args)
(or (keyword-apply f keys vals args) ...)])]
[fs
(make-intermediate-procedure
'disjoined
[(x ... 2) (ormap (lambda (f) (f x ...)) fs)]
[xs (ormap (lambda (f) (apply f xs)) fs)]
#:keyword
[(keys vals . args)
(ormap (lambda (f) (keyword-apply f keys vals args)) fs)])]))
(define-syntax (make-intermediate-procedure stx)
(syntax-case stx [quote]
[(_ (quote name) positional-clause ... #:keyword keyword-clause)
(syntax/loc stx
(make-keyword-procedure
(let* ([name (case-lambda keyword-clause)]) name)
(let* ([name (case-lambda* positional-clause ...)]) name)))]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
@ -76,275 +129,3 @@
(syntax->list #'(body ...)))])
(syntax/loc stx
(case-lambda [pattern body] ...)))]))
(define-syntax (make-intermediate-procedure stx)
(syntax-case stx [quote]
[(_ (quote name) positional-clause ... #:keyword keyword-clause)
(syntax/loc stx
(make-keyword-procedure
(let* ([name (case-lambda keyword-clause)]) name)
(let* ([name (case-lambda* positional-clause ...)]) name)))]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Higher-Order Boolean Operations
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define conjoin
(case-lambda*
[(f ... 8)
(make-intermediate-procedure
'conjoined
[(x (... ...) 8) (and (f x (... ...)) ...)]
[xs (and (apply f xs) ...)]
#:keyword
[(keys vals . args)
(and (keyword-apply f keys vals args) ...)])]
[fs
(make-intermediate-procedure
'conjoined
[(x ... 8) (andmap (lambda (f) (f x ...)) fs)]
[xs (andmap (lambda (f) (apply f xs)) fs)]
#:keyword
[(keys vals . args)
(andmap (lambda (f) (keyword-apply f keys vals args)) fs)])]))
(define disjoin
(case-lambda*
[(f ... 8)
(make-intermediate-procedure
'disjoined
[(x (... ...) 8) (or (f x (... ...)) ...)]
[xs (or (apply f xs) ...)]
#:keyword
[(keys vals . args)
(or (keyword-apply f keys vals args) ...)])]
[fs
(make-intermediate-procedure
'disjoined
[(x ... 8) (ormap (lambda (f) (f x ...)) fs)]
[xs (ormap (lambda (f) (apply f xs)) fs)]
#:keyword
[(keys vals . args)
(ormap (lambda (f) (keyword-apply f keys vals args)) fs)])]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Function Invocation (partial or indirect)
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define-syntax-rule (cons2 one two rest)
(let*-values ([(ones twos) rest])
(values (cons one ones) (cons two twos))))
(define merge-keywords
(match-lambda*
[(or (list _ '() '() keys vals)
(list _ keys vals '() '()))
(values keys vals)]
[(list name
(and keys1* (cons key1 keys1)) (and vals1* (cons val1 vals1))
(and keys2* (cons key2 keys2)) (and vals2* (cons val2 vals2)))
(cond
[(keyword<? key1 key2)
(cons2 key1 val1 (merge-keywords name keys1 vals1 keys2* vals2*))]
[(keyword<? key2 key1)
(cons2 key2 val2 (merge-keywords name keys1* vals1* keys2 vals2))]
[else
(error name
"duplicate values for ~s: ~s and ~s"
key1 val1 val2)])]))
(define curryn
(make-intermediate-procedure
'curryn
[(n f x ... 8)
(if (<= n 0)
(f x ...)
(make-intermediate-procedure
'curried
[(y (... ...) 8) (curryn (sub1 n) f x ... y (... ...))]
[ys (curryn (sub1 n) f x ... ys)]
#:keyword
[(ks vs . ys)
(keyword-apply curryn ks vs (sub1 n) f x ... ys)]))]
[(n f . xs)
(if (<= n 0)
(apply f xs)
(make-intermediate-procedure
'curried
[ys (apply curryn (sub1 n) f (append xs ys))]
#:keyword
[(ks vs . ys)
(keyword-apply curryn ks vs (sub1 n) f (append xs ys))]))]
#:keyword
[(ks vs n f . xs)
(if (<= n 0)
(keyword-apply f ks vs xs)
(make-intermediate-procedure
'curried
[ys (keyword-apply curryn ks vs (sub1 n) f (append xs ys))]
#:keyword
[(ks* vs* . ys)
(let*-values ([(keys vals) (merge-keywords 'curryn ks vs ks* vs*)])
(keyword-apply curryn keys vals (sub1 n) f (append xs ys)))]))]))
(define currynr
(make-intermediate-procedure
'currynr
[(n f x ... 8)
(if (<= n 0)
(f x ...)
(make-intermediate-procedure
'curried
[(y (... ...) 8) (currynr (sub1 n) f y (... ...) x ...)]
[ys (currynr (sub1 n) f (append ys (list x ...)))]
#:keyword
[(ks vs . ys)
(keyword-apply currynr ks vs (sub1 n) f (append ys (list x ...)))]))]
[(n f . xs)
(if (<= n 0)
(apply f xs)
(make-intermediate-procedure
'curried
[ys (apply currynr (sub1 n) f (append ys xs))]
#:keyword
[(ks vs . ys)
(keyword-apply currynr ks vs (sub1 n) f (append ys xs))]))]
#:keyword
[(ks vs n f . xs)
(if (<= n 0)
(keyword-apply f ks vs xs)
(make-intermediate-procedure
'curried
[ys (keyword-apply currynr ks vs (sub1 n) f (append ys xs))]
#:keyword
[(ks* vs* . ys)
(let*-values ([(keys vals) (merge-keywords 'currynr ks vs ks* vs*)])
(keyword-apply currynr keys vals (sub1 n) f (append ys xs)))]))]))
(define papply
(make-intermediate-procedure
'papply
[(f x ... 8)
(make-intermediate-procedure
'partially-applied
[(y (... ...) 8) (f x ... y (... ...))]
[ys (apply f x ... ys)]
#:keyword
[(ks vs . ys) (keyword-apply f ks vs x ... ys)])]
[(f . xs)
(make-intermediate-procedure
'partially-applied
[ys (apply f (append xs ys))]
#:keyword
[(ks vs . ys) (keyword-apply f ks vs (append xs ys))])]
#:keyword
[(ks vs f . xs)
(make-intermediate-procedure
'partially-applied
[ys (keyword-apply f ks vs (append xs ys))]
#:keyword
[(ks* vs* . ys)
(let*-values ([(keys vals) (merge-keywords 'papply ks vs ks* vs*)])
(keyword-apply f keys vals (append xs ys)))])]))
(define papplyr
(make-intermediate-procedure
'papplyr
[(f x ... 8)
(make-intermediate-procedure
'partially-applied
[(y (... ...) 8) (f y (... ...) x ...)]
[ys (apply f (append ys (list x ...)))]
#:keyword
[(ks vs . ys) (keyword-apply f ks vs (append ys (list x ...)))])]
[(f . xs)
(make-intermediate-procedure
'partially-applied
[ys (apply f (append ys xs))]
#:keyword
[(ks vs . ys) (keyword-apply f ks vs (append ys xs))])]
#:keyword
[(ks vs f . xs)
(make-intermediate-procedure
'partially-applied
[ys (keyword-apply f ks vs (append ys xs))]
#:keyword
[(ks* vs* . ys)
(let*-values ([(keys vals) (merge-keywords 'papplyr ks vs ks* vs*)])
(keyword-apply f keys vals (append ys xs)))])]))
(define call
(make-intermediate-procedure
'call
[(f x ... 8) (f x ...)]
[(f . xs) (apply f xs)]
#:keyword
[(ks vs f . xs) (keyword-apply f ks vs xs)]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Eta expansion
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define-syntax eta*
(syntax-rules ()
[(_ f arg ...) (lambda (arg ...) (f arg ...))]
[(_ f arg ... . rest) (lambda (arg ... . rest) (apply f arg ... rest))]))
(define-syntax-rule (eta f) (make-eta-expansion (lambda () f)))
(define (make-eta-expansion f*)
(make-intermediate-procedure
'eta
[(x ... 8) ((f*) x ...)]
[xs (apply (f*) xs)]
#:keyword
[(ks vs . xs) (keyword-apply (f*) ks vs xs)]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Parameter arguments
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define-for-syntax (strip-param orig p-arg)
(syntax-case p-arg ()
[(id #:param param)
(values (syntax/loc p-arg (id (param)))
(syntax/loc p-arg [param id]))]
[_ (values p-arg #f)]))
(define-for-syntax (strip-params orig p-args)
(syntax-case p-args ()
[(key p-arg . rest)
(keyword? #'key)
(let*-values ([(arg param) (strip-param orig #'p-arg)]
[(args params) (strip-params orig #'rest)])
(values (cons #'key (cons arg args))
(if param (cons param params) params)))]
[(p-arg . rest)
(let*-values ([(arg param) (strip-param orig #'p-arg)]
[(args params) (strip-params orig #'rest)])
(values (cons arg args)
(if param (cons param params) params)))]
[_ (values p-args null)]))
(define-syntax (lambda/parameter stx)
(syntax-case stx ()
[(_ p-args . body)
(let*-values ([(args params) (strip-params stx #'p-args)])
(quasisyntax/loc stx
(lambda #,args (parameterize #,params . body))))]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Exports
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(provide
;; functions
conjoin disjoin
curryn currynr papply papplyr call
;; macros
eta eta*
lambda/parameter)

View File

@ -12,25 +12,8 @@
This module provides tools for higher-order programming and creating functions.
@section{Simple Functions}
@section{Higher Order Predicates}
@defproc[((negate [f (-> A ... boolean?)]) [x A] ...) boolean?]{
Negates the results of @racket[f]; equivalent to @racket[(not (f x ...))].
This function is reprovided from @racketmodname[scheme/function].
@defexamples[
#:eval the-eval
(define f (negate exact-integer?))
(f 1)
(f 'one)
]
}
@defproc[((conjoin [f (-> A ... boolean?)] ...) [x A] ...) boolean?]{
Combines calls to each function with @racket[and]. Equivalent to
@ -63,191 +46,4 @@ Combines calls to each function with @racket[or]. Equivalent to
}
@section{Currying and (Partial) Application}
@defproc[(call [f (-> A ... B)] [x A] ...) B]{
Passes @racket[x ...] to @racket[f]. Keyword arguments are allowed. Equivalent
to @racket[(f x ...)]. Useful for application in higher-order contexts.
@defexamples[
#:eval the-eval
(map call
(list + - * /)
(list 1 2 3 4)
(list 5 6 7 8))
(define count 0)
(define (inc)
(set! count (+ count 1)))
(define (reset)
(set! count 0))
(define (show)
(printf "~a\n" count))
(for-each call (list inc inc show reset show))
]
}
@deftogether[(
@defproc[(papply [f (A ... B ... -> C)] [x A] ...) (B ... -> C)]
@defproc[(papplyr [f (A ... B ... -> C)] [x B] ...) (A ... -> C)]
)]{
The @racket[papply] and @racket[papplyr] functions partially apply @racket[f] to
@racket[x ...], which may include keyword arguments. They obey the following
equations:
@racketblock[
((papply f x ...) y ...) = (f x ... y ...)
((papplyr f x ...) y ...) = (f y ... x ...)
]
@defexamples[
#:eval the-eval
(define reciprocal (papply / 1))
(reciprocal 3)
(reciprocal 4)
(define halve (papplyr / 2))
(halve 3)
(halve 4)
]
}
@deftogether[(
@defproc[(curryn [n exact-nonnegative-integer?]
[f (A0 ... A1 ... ooo An ... -> B)]
[x A0] ...)
(A1 ... -> ooo -> An ... -> B)]
@defproc[(currynr [n exact-nonnegative-integer?]
[f (A1 ... ooo An ... An+1 ... -> B)]
[x An+1] ...)
(An ... -> ooo -> A1 ... -> B)]
)]{
@emph{Note:} The @racket[ooo] above denotes a loosely associating ellipsis.
The @racket[curryn] and @racket[currynr] functions construct a curried version
of @racket[f], specialized at @racket[x ...], that produces a result after
@racket[n] further applications. Arguments at any stage of application may
include keyword arguments, so long as no keyword is duplicated. These curried
functions obey the following equations:
@racketblock[
(curryn 0 f x ...) = (f x ...)
((curryn (+ n 1) f x ...) y ...) = (curryn n f x ... y ...)
(currynr 0 f x ...) = (f x ...)
((currynr (+ n 1) f x ...) y ...) = (currynr n f y ... x ...)
]
The @racket[call], @racket[papply], and @racket[papplyr] utilities are related
to @racket[curryn] and @racket[currynr] in the following manner:
@racketblock[
(call f x ...) = (curryn 0 f x ...) = (currynr 0 f x ...)
(papply f x ...) = (curryn 1 f x ...)
(papplyr f x ...) = (currynr 1 f x ...)
]
@defexamples[
#:eval the-eval
(define reciprocal (curryn 1 / 1))
(reciprocal 3)
(reciprocal 4)
(define subtract-from (curryn 2 -))
(define from-10 (subtract-from 10))
(from-10 5)
(from-10 10)
(define from-0 (subtract-from 0))
(from-0 5)
(from-0 10)
(define halve (currynr 1 / 2))
(halve 3)
(halve 4)
(define subtract (currynr 2 -))
(define minus-10 (subtract 10))
(minus-10 5)
(minus-10 10)
(define minus-0 (subtract 0))
(minus-0 5)
(minus-0 10)
]
}
@section{Eta Expansion}
@defform[(eta f)]{
Produces a function equivalent to @racket[f], except that @racket[f] is
evaluated every time it is called.
This is useful for function expressions that may be run, but not called, before
@racket[f] is defined. The @racket[eta] expression will produce a function
without evaluating @racket[f].
@defexamples[
#:eval the-eval
(define f (eta g))
f
(define g (lambda (x) (+ x 1)))
(f 1)
]
}
@defform[(eta* f x ...)]{
Produces a function equivalent to @racket[f], with argument list @racket[x ...].
In simple cases, this is equivalent to @racket[(lambda (x ...) (f x ...))].
Optional (positional or keyword) arguments are not allowed.
This macro behaves similarly to @racket[eta], but produces a function with
statically known arity which may improve efficiency and error reporting.
@defexamples[
#:eval the-eval
(define f (eta* g x))
f
(procedure-arity f)
(define g (lambda (x) (+ x 1)))
(f 1)
]
}
@section{Parameter Arguments}
@defform/subs[
(lambda/parameter (param-arg ...) body ...)
([param-arg param-arg-spec (code:line keyword param-spec)]
[param-arg-spec id [id default-expr] [id #:param param-expr]])
]{
Constructs a function much like @racket[lambda], except that some optional
arguments correspond to the value of a parameter. For each clause of the form
@racket[[id #:param param-expr]], @racket[param-expr] must evaluate to a value
@racket[param] satisfying @racket[parameter?]. The default value of the
argument @racket[id] is @racket[(param)]; @racket[param] is bound to @racket[id]
via @racket[parameterize] during the function call.
@defexamples[
#:eval the-eval
(define p (open-output-string))
(define hello-world
(lambda/parameter ([port #:param current-output-port])
(display "Hello, World!")
(newline port)))
(hello-world p)
(get-output-string p)
]
}
@(close-eval the-eval)