start on regexp functions; further formatting improvements for defproc

svn: r6745
This commit is contained in:
Matthew Flatt 2007-06-27 00:17:04 +00:00
parent 4e72b10ce4
commit bf717526b0
6 changed files with 629 additions and 125 deletions

View File

@ -393,20 +393,21 @@
[(eq? v '...)
dots0]
[else v]))]
[prototype-size (lambda (s)
(let loop ([s s])
[prototype-size (lambda (s first-combine next-combine)
(let loop ([s s][combine first-combine])
(if (null? s)
1
(+ 1 (loop (cdr s))
(cond
[(symbol? (car s)) (string-length (symbol->string (car s)))]
[(pair? (car s))
(if (keyword? (caar s))
(+ (string-length (keyword->string (caar s)))
3
(string-length (symbol->string (cadar s))))
(string-length (symbol->string (caar s))))]
[else 0])))))])
0
(combine
(loop (cdr s) next-combine)
(cond
[(symbol? (car s)) (string-length (symbol->string (car s)))]
[(pair? (car s))
(if (keyword? (caar s))
(+ (string-length (keyword->string (caar s)))
3
(string-length (symbol->string (cadar s))))
(string-length (symbol->string (caar s))))]
[else 0])))))])
(parameterize ([current-variable-list
(map (lambda (i)
(and (pair? i)
@ -422,34 +423,41 @@
append
(map
(lambda (stx-id prototype arg-contracts result-contract first?)
(append
(list
(list (make-flow
(let-values ([(required optional more-required)
(let loop ([a (cdr prototype)][r-accum null])
(if (or (null? a)
(and (has-optional? (car a))))
(let ([req (reverse r-accum)])
(let loop ([a a][o-accum null])
(if (or (null? a)
(not (has-optional? (car a))))
(values req (reverse o-accum) a)
(loop (cdr a) (cons (car a) o-accum)))))
(loop (cdr a) (cons (car a) r-accum))))]
[(tagged) (if first?
(make-target-element
#f
(list (to-element (make-just-context (car prototype)
stx-id)))
(register-scheme-definition stx-id))
(to-element (make-just-context (car prototype)
stx-id)))]
[(short?) (or ((prototype-size prototype) . < . 40)
((length prototype) . < . 3))]
[(end) (list (to-flow spacer)
(to-flow 'rarr)
(to-flow spacer)
(make-flow (list (result-contract))))])
(let*-values ([(required optional more-required)
(let loop ([a (cdr prototype)][r-accum null])
(if (or (null? a)
(and (has-optional? (car a))))
(let ([req (reverse r-accum)])
(let loop ([a a][o-accum null])
(if (or (null? a)
(not (has-optional? (car a))))
(values req (reverse o-accum) a)
(loop (cdr a) (cons (car a) o-accum)))))
(loop (cdr a) (cons (car a) r-accum))))]
[(tagged) (if first?
(make-target-element
#f
(list (to-element (make-just-context (car prototype)
stx-id)))
(register-scheme-definition stx-id))
(to-element (make-just-context (car prototype)
stx-id)))]
[(flat-size) (prototype-size prototype + +)]
[(short?) (or (flat-size . < . 40)
((length prototype) . < . 3))]
[(res) (result-contract)]
[(result-next-line?) ((+ (if short?
flat-size
(prototype-size prototype + max))
(flow-element-width res))
. >= . 50)]
[(end) (list (to-flow spacer)
(to-flow 'rarr)
(to-flow spacer)
(make-flow (list res)))])
(append
(list
(list (make-flow
(if short?
(make-table-if-necessary
"prototype"
@ -468,12 +476,16 @@
'paren-shape
#\?))))
(map arg->elem more-required))))
end)))
(if result-next-line?
null
end))))
(let ([not-end
(list (to-flow spacer)
(to-flow spacer)
(to-flow spacer)
(to-flow spacer))])
(if result-next-line?
(list (to-flow spacer))
(list (to-flow spacer)
(to-flow spacer)
(to-flow spacer)
(to-flow spacer)))])
(list
(make-table
"prototype"
@ -513,40 +525,46 @@
#f
(list a "]" (schemeparenfont ")"))))]
[else a])))
(if (null? (cdr args))
(if (and (null? (cdr args))
(not result-next-line?))
end
not-end))
(loop (cdr args) (sub1 req))))))))))))))
(apply append
(map (lambda (v arg-contract)
(cond
[(pair? v)
(list
(list
(make-flow
(make-table-if-necessary
"argcontract"
(list
(let ([v (if (keyword? (car v))
(cdr v)
v)])
(append
(list
(to-flow (hspace 2))
(to-flow (arg->elem v))
(to-flow spacer)
(to-flow ":")
(to-flow spacer)
(make-flow (list (arg-contract))))
(if (has-optional? v)
(list (to-flow spacer)
(to-flow "=")
(to-flow spacer)
(to-flow (to-element (caddr v))))
null))))))))]
[else null]))
(cdr prototype)
arg-contracts))))
(loop (cdr args) (sub1 req)))))))))))))
(if result-next-line?
(list (list (make-flow (make-table-if-necessary
"prototype"
(list end)))))
null)
(apply append
(map (lambda (v arg-contract)
(cond
[(pair? v)
(list
(list
(make-flow
(make-table-if-necessary
"argcontract"
(list
(let ([v (if (keyword? (car v))
(cdr v)
v)])
(append
(list
(to-flow (hspace 2))
(to-flow (arg->elem v))
(to-flow spacer)
(to-flow ":")
(to-flow spacer)
(make-flow (list (arg-contract))))
(if (has-optional? v)
(list (to-flow spacer)
(to-flow "=")
(to-flow spacer)
(to-flow (to-element (caddr v))))
null))))))))]
[else null]))
(cdr prototype)
arg-contracts)))))
stx-ids
prototypes
arg-contractss

View File

@ -372,7 +372,8 @@
(make-link-element "schemesyntaxlink" (list s) stag)]
[vd
(make-link-element "schemevaluelink" (list s) vtag)]
[else s])))))
[else s]))))
(lambda () s))
(literalize-spaces s))
(cond
[(positive? quote-depth) value-color]

View File

@ -95,28 +95,33 @@
delayed-element-ref
delayed-element-set!)
(make-struct-type 'delayed-element #f
1 1 #f
2 1 #f
(list (cons prop:serializable
(make-serialize-info
(lambda (d)
(unless (delayed-element-ref d 1)
(unless (delayed-element-ref d 2)
(error 'serialize-delayed-element
"cannot serialize a delayed element that was not resolved: ~e"
d))
(vector (delayed-element-ref d 1)))
(vector (delayed-element-ref d 2)))
#'deserialize-delayed-element
#f
(or (current-load-relative-directory) (current-directory)))))))
(define-syntax delayed-element (list-immutable #'struct:delayed-element
#'make-delayed-element
#'delayed-element?
(list-immutable #'delayed-element-render)
(list-immutable #'set-delayed-element-render!)
(list-immutable #'delayed-element-sizer
#'delayed-element-render)
(list-immutable #'set-delayed-element-sizer!
#'set-delayed-element-render!)
#t))
(define delayed-element-render (make-struct-field-accessor delayed-element-ref 0))
(define delayed-element-sizer (make-struct-field-accessor delayed-element-ref 1))
(define set-delayed-element-render! (make-struct-field-mutator delayed-element-set! 0))
(define set-delayed-element-sizer! (make-struct-field-mutator delayed-element-set! 1))
(provide/contract
(struct delayed-element ([render (any/c part? any/c . -> . list?)])))
(struct delayed-element ([render (any/c part? any/c . -> . list?)]
[sizer (-> any)])))
(provide deserialize-delayed-element)
(define deserialize-delayed-element
@ -124,9 +129,9 @@
(provide force-delayed-element)
(define (force-delayed-element d renderer sec ht)
(or (delayed-element-ref d 1)
(or (delayed-element-ref d 2)
(let ([v ((delayed-element-ref d 0) renderer sec ht)])
(delayed-element-set! d 1 v)
(delayed-element-set! d 2 v)
v)))
;; ----------------------------------------
@ -163,5 +168,52 @@
renderer sec ht)]
[else (element->string c)])]))
;; ----------------------------------------
(provide flow-element-width
element-width)
(define (element-width s)
(cond
[(string? s) (string-length s)]
[(element? s) (apply + (map element-width (element-content s)))]
[(delayed-element? s) (element-width ((delayed-element-sizer s)))]
[else 1]))
(define (paragraph-width s)
(apply + (map element-width (paragraph-content s))))
(define (flow-width f)
(apply max 0 (map flow-element-width (flow-paragraphs f))))
(define (flow-element-width p)
(cond
[(paragraph? p) (paragraph-width p)]
[(table? p) (table-width p)]
[(itemization? p) (itemization-width p)]
[(blockquote? p) (blockquote-width p)]
[(delayed-flow-element? p) 1]))
(define (table-width p)
(let ([flowss (table-flowss p)])
(if (null? flowss)
0
(let loop ([flowss flowss])
(if (null? (car flowss))
0
(+ (apply max
0
(map flow-width
(map car flowss)))
(loop (map cdr flowss))))))))
(define (itemization-width p)
(apply max 0 (map flow-width (itemization-flows p))))
(define (blockquote-width p)
(+ 4 (apply max 0 (map paragraph-width (blockquote-paragraphs p)))))
;; ----------------------------------------
)

View File

@ -28,25 +28,7 @@ language.
@subsection[#:tag "mz:char-input"]{From Bytes to Characters}
@;------------------------------------------------------------------------
@section["Regular Expressions"]
@require["rx.ss"]
Common grammar:
@common-table
Rx table:
@rx-table
Px table:
@px-table
Types:
@type-table
@include-section["regexps.scrbl"]
@;------------------------------------------------------------------------

View File

@ -0,0 +1,454 @@
#reader(lib "docreader.ss" "scribble")
@require[(lib "bnf.ss" "scribble")]
@require["mz.ss"]
@require["rx.ss"]
@title[#:tag "mz:regexp"]{Regular Expressions}
@;{
\index{regular expressions}
\index{regexps|see{regular expressions}}
\index{pattern matching}
\index{strings!pattern matching}
\index{input ports!pattern matching}
}
Regular expressions are specified as strings or byte strings, using
the same pattern language as the Unix utility @exec{egrep} or Perl. A
string-specified pattern produces a character regexp matcher, and a
byte-string pattern produces a byte regexp matcher. If a character
regexp is used with a byte string or input port, it matches UTF-8
encodings (see @secref["mz:encodings"]) of matching character streams;
if a byte regexp is used with a character string, it matches bytes in
the UTF-8 encoding of the string.
Regular expressions can be compiled into a @defterm{regexp value} for
repeated matches. The @scheme[regexp] and @scheme[byte-regexp]
procedures convert a string or byte string (respectively) into a
regexp value using one syntax of regular expressions that is most
compatible to @exec{egrep}. The @scheme[pregexp] and
@scheme[byte-pregexp] procedures produce a regexp value using a
slightly different syntax of regular expressions that is more
compatible with Perl. In addition, Scheme constants written with
@litchar{#rx} or @litchar{#px} (see @secref["mz:reader"]) produce
compiled regexp values.
The internal size of a regexp value is limited to 32 kilobytes; this
limit roughly corresponds to a source string with 32,000 literal
characters or 5,000 operators.
@;------------------------------------------------------------------------
@section[#:tag "mz:regexp-syntax"]{Regexp Syntax}
The following syntax specifications describe the content of a string
that represents a regular expression. The syntax of the corresponding
string may involve extra escape characters. For example, the regular
expression @litchar["(.*)\\1"] can be represented with the string
@scheme["(.*)\\1"] or the regexp constant @scheme[#rx"(.*)\\1"]; the
@litchar["\\"] in the regular expression must be escaped to include it
in a string or regexp constant.
The @scheme[regexp] and @scheme[pregexp] syntaxes share a common core:
@common-table
The following completes the grammar for @scheme[regexp], which treats
@litchar["{"] and @litchar["}"] as literals, @litchar["\\"] as a
literal within ranges, and @litchar["\\"] as a literal producer
outside of ranges.
@rx-table
The following completes the grammar for @scheme[pregexp], which uses
@litchar["{"] and @litchar["}"] bounded repetition and uses
@litchar["\\"] for meta-characters both inside and outside of ranges.
@px-table
@;------------------------------------------------------------------------
@section{Additional Syntactic Constraints}
In addition to matching a grammars, regular expressions must meet two
syntactic restrictions:
@itemize{
@item{In a @nonterm{repeat} other than @nonterm{atom}@litchar{?},
then @nonterm{atom} must not match an empty sequence.}
@item{In a @litchar{(?<=}@nonterm{regexp}@litchar{)} or
@litchar{(?<!}@nonterm{regexp}@litchar{)},
the @nonterm{regexp} must match a bounded sequence, only.}
}
These contraints are checked syntactically by the following type
system. A type [@math{n}, @math{m}] corresponds to an expression that
matches between @math{n} and @math{m} characters. In the rule for
@litchar{(}@nonterm{Regexp}@litchar{)}, @math{N} means the number such
that the opening parenthesis is the @math{N}th opening parenthesis for
collecting match reports. Non-emptiness is inferred for a
backreference pattern, @litchar["\\"]@nonterm{N}, so that a
backreference can be used for repetition patterns; in the case of
mutual dependencies among backreferences, the inference chooses the
fixpoint that maximizes non-emptiness. Finiteness is not inferred for
backreferences (i.e., a backreference is assumed to match an
arbitrarily large sequence).
@type-table
@;------------------------------------------------------------------------
@section{Regexp Constructors}
@defproc[(regexp [str string?]) regexp?]{
Takes a string representation of a regular expression (using the
syntax in @secref["mz:regexp-syntax"]) and compiles it into a regexp
value. Other regular expression procedures accept either a string or a
regexp value as the matching pattern. If a regular expression string
is used multiple times, it is faster to compile the string once to a
regexp value and use it for repeated matches instead of using the
string each time.
The @scheme[object-name] procedure (see @secref["mz:infernames"]) returns
the source string for a regexp value.
@examples[
(regexp "ap*le")
(object-name #rx"ap*le")
]}
@defproc[(pregexp [string string?]) pregexp?]{
Like @scheme[regexp], except that it uses a slightly different syntax
(see @secref["mz:regexp-syntax"]). The result can be used with
@scheme[regexp-match], etc., just like the result from
@scheme[regexp].
@examples[
(pregexp "ap*le")
(regexp? #px"ap*le")
]}
@defproc[(regexp? [v any/c]) boolean?]{
Returns @scheme[#t] if @scheme[v] is a regexp value created by
@scheme[regexp] or @scheme[pregexp], @scheme[#f] otherwise.}
@defproc[(pregexp? [v any/c]) boolean?]{
Returns @scheme[#t] if @scheme[v] is a regexp value created by
@scheme[pregexp] (not @scheme[regexp]), @scheme[#f] otherwise.}
@defproc[(byte-regexp [bstr bytes?]) byte-regexp?]{
Takes a byte-string representation of a regular expression (using the
syntax in @secref["mz:regexp-syntax"]) and compiles it into a
byte-regexp value.
The @scheme[object-name] procedure (see @secref["mz:infernames"])
returns the source byte string for a regexp value.
@examples[
(byte-regexp #"ap*le")
(byte-regexp "ap*le")
]}
@defproc[(byte-pregexp [bstr bytes?]) byte-pregexp?]{
Like @scheme[byte-regexp], except that it uses a slightly different
syntax (see @secref["mz:regexp-syntax"]). The result can be used with
@scheme[regexp-match], etc., just like the result from
@scheme[byte-regexp].
@examples[
(byte-pregexp #"ap*le")
]}
@defproc[(byte-regexp? [v any/c]) boolean?]{
Returns @scheme[#t] if @scheme[v] is a regexp value created by
@scheme[byte-regexp] or @scheme[byte-pregexp], @scheme[#f] otherwise.}
@defproc[(byte-pregexp? [v any/c]) boolean?]{
Returns @scheme[#t] if @scheme[v] is a regexp value created by
@scheme[byte-pregexp] (not @scheme[byte-regexp]), @scheme[#f]
otherwise.}
@;------------------------------------------------------------------------
@section{Regexp Matching}
@defproc[(regexp-match [pattern (or/c string? bytes? regexp? bytes-regexp?)]
[input (or/c string? bytes? input-port?)]
[start-pos nonnegative-exact-integer? 0]
[end-pos (or/c nonnegative-exact-integer? false/c) #f]
[output-port (or/c output-port? false/c) #f])
(or/c (listof (or/c (cons (or/c string? bytes?)
(or/c string? bytes?))
false/c))
false/c)]{
Attempts to match @scheme[pattern] (a string, byte string, regexp
value, or byte-regexp value) once to a portion of @scheme[input]. The
matcher finds a portion of @scheme[input] that matches and is closest
to the start of the input (after @scheme[start-pos]).
The optional @scheme[start-pos] and @scheme[end-pos] arguments select
a portion of @scheme[input] for matching; the default is the entire
string or the stream up to an end-of-file. When @scheme[input] is a
string, @scheme[start-pos] is a character position; when
@scheme[input] is a byte string, then @scheme[start-pos] is a byte
position; and when @scheme[input] is an input port, @scheme[start-pos]
is the number of bytes to skip before starting to match. The
@scheme[end-pos] argument can be @scheme[#f], which corresponds to the
end of the string or the end-of-file in the stream; otherwise, it is a
character or byte position, like @scheme[start-pos]. If @scheme[input]
is an input port, and if the end-of-file is reached before
@scheme[start-pos] bytes are skipped, then the match fails.
In @scheme[pattern], a start-of-string @litchar{^} refers to the first
position of @scheme[input] after @scheme[start-pos], and the
end-of-input @litchar{$} refers to the @scheme[end-pos]th position or
(in the case of an input port) the end of file, whichever comes first.
If the match fails, @scheme[#f] is returned. If the match succeeds, a
list containing strings or byte string, and possibly @scheme[#f], is
returned. The list contains strings only if @scheme[input] is a string
and @scheme[pattern] is not a byte regexp value. Otherwise, the list
contains byte strings (substrings of the UTF-8 encoding of
@scheme[input], if @scheme[input] is a string).
The first [byte] string in a result list is the portion of
@scheme[input] that matched @scheme[pattern]. If two portions of
@scheme[input] can match @scheme[pattern], then the match that starts
earliest is found.
Additional [byte] strings are returned in the list if @scheme[pattern]
contains parenthesized sub-expressions (but not when the open
parenthesis is followed by @litchar{?:}). Matches for the
sub-expressions are provided in the order of the opening parentheses
in @scheme[pattern]. When sub-expressions occur in branches of an
@litchar["|"] ``or'' pattern, in a @litchar{*} ``zero or more''
pattern, or other places where the overall pattern can succeed without
a match for the sub-expression, then a @scheme[#f] is returned for the
sub-expression if it did not contribute to the final match. When a
single sub-expression occurs within a @litchar{*} ``zero or more''
pattern or other multiple-match positions, then the rightmost match
associated with the sub-expression is returned in the list.
If the optional @scheme[output-port] is provided as an output port,
the part of @scheme[input] from its beginning (not @scheme[start-pos])
that precedes the match is written to the port. All of @scheme[input]
up to @scheme[end-pos] is written to the port if no match is
found. This functionality is most useful when @scheme[input] is an
input port.
When matching an input port, a match failure reads up to
@scheme[end-pos] bytes (or end-of-file), even if @scheme[pattern]
begins with a start-of-string @litchar{^}; see also
@scheme[regexp-match/fail-without-reading]. On success, all bytes up
to and including the match are eventually read from the port, but
matching proceeds by first peeking bytes from the port (using
@scheme[peek-bytes-avail!]), and then (re-)reading matching bytes to
discard them after the match result is determined. Non-matching bytes
may be read and discarded before the match is determined. The matcher
peeks in blocking mode only as far as necessary to determine a match,
but it may peek extra bytes to fill an internal buffer if immediately
available (i.e., without blocking). Greedy repeat operators in
@scheme[pattern], such as @litchar{*} or @litchar{+}, tend to force
reading the entire content of the port (up to @scheme[end-pos]) to
determine a match.
If the input port is read simultaneously by another thread, or if the
port is a custom port with inconsistent reading and peeking procedures
(see @secref["mz:customport"]), then the bytes that are peeked and
used for matching may be different than the bytes read and discarded
after the match completes; the matcher inspects only the peeked
bytes. To avoid such interleaving, use @scheme[regexp-match-peek]
(with a @scheme[progress-evt] argument) followed by
@scheme[port-commit-peeked].}
@defproc[(regexp-match-positions [pattern (or/c string? bytes? regexp? bytes-regexp?)]
[input (or/c string? bytes? input-port?)]
[start-pos nonnegative-exact-integer? 0]
[end-pos (or/c nonnegative-exact-integer? false/c) #f]
[output-port (or/c output-port? false/c) #f])
(or/c (listof (or/c (cons nonnegative-exact-integer?
nonnegative-exact-integer?)
false/c))
false/c)]{
Like @scheme[regexp-match], but returns a list of number pairs (and
@scheme[#f]) instead of a list of strings. Each pair of numbers refers
to a range of characters or bytes in @scheme[input]. If the result for
the same arguments with @scheme[regexp-match] would be a list of byte
strings, the resulting ranges correspond to byte ranges; in that case,
if @scheme[input] is a character string, the byte ranges correspond to
bytes in the UTF-8 encoding of the string.
Range results are returned in a @scheme[substring]- and
@scheme[subbytes]-compatible manner, independent of
@scheme[start-pos]. In the case of an input port, the returned
positions indicate the number of bytes that were read, including
@scheme[start-pos], before the first matching byte.}
@defproc[(regexp-match? [pattern (or/c string? bytes? regexp? bytes-regexp?)]
[input (or/c string? bytes? input-port?)]
[start-pos nonnegative-exact-integer? 0]
[end-pos (or/c nonnegative-exact-integer? false/c) #f]
[output-port (or/c output-port? false/c) #f])
boolean?] {
Like @scheme[regexp-match], but returns merely @scheme[#t] when the
match succeeds, @scheme[#f] otherwise.}
@defproc[(regexp-match-peek [pattern (or/c string? bytes? regexp? bytes-regexp?)]
[input input-port?]
[start-pos nonnegative-exact-integer? 0]
[end-pos (or/c nonnegative-exact-integer? false/c) #f]
[progress (or/c evt false/c) #f])
(or/c (listof (or/c (cons bytes? bytes?)
false/c))
false/c)]{
Like @scheme[regexp-match] on input ports, but only peeks bytes from
@scheme[input-port] instead of reading them. Furthermore, instead of
an output port, the last optional argument is a progress event for
@scheme[input-port] (see @secref["mz:read"]). If @scheme[progress]
becomes ready, then the match stops peeking from @scheme[input-port]
and returns @scheme[#f]. The @scheme[progress] argument can be
@scheme[#f], in which case the peek may continue with inconsistent
information if another process meanwhile reads from
@scheme[input-port].}
@defproc[(regexp-match-peek-positions [pattern (or/c string? bytes? regexp? bytes-regexp?)]
[input input-port?]
[start-pos nonnegative-exact-integer? 0]
[end-pos (or/c nonnegative-exact-integer? false/c) #f]
[progress (or/c evt false/c) #f])
(or/c (listof (or/c (cons nonnegative-exact-integer?
nonnegative-exact-integer?)
false/c))
false/c)]{
Like @scheme[regexp-match-positions] on input ports, but only peeks
bytes from @scheme[input-port] instead of reading them, and with a
@scheme[progress] argument like @scheme[regexp-match-peek].}
@defproc[(regexp-match-peek-immediate [pattern (or/c string? bytes? regexp? bytes-regexp?)]
[input input-port?]
[start-pos nonnegative-exact-integer? 0]
[end-pos (or/c nonnegative-exact-integer? false/c) #f]
[progress (or/c evt false/c) #f])
(or/c (listof (or/c (cons bytes? bytes?)
false/c))
false/c)]{
Like @scheme[regexp-match-peek], but it attempts to match only bytes
that are available from @scheme[input-port] without blocking. The
match fails if not-yet-available characters might be used to match
@scheme[pattern].}
@defproc[(regexp-match-peek-positions-immediate [pattern (or/c string? bytes? regexp? bytes-regexp?)]
[input input-port?]
[start-pos nonnegative-exact-integer? 0]
[end-pos (or/c nonnegative-exact-integer? false/c) #f]
[progress (or/c evt false/c) #f])
(or/c (listof (or/c (cons nonnegative-exact-integer?
nonnegative-exact-integer?)
false/c))
false/c)]{
Like @scheme[regexp-match-peek-positions], but it attempts to match
only bytes that are available from @scheme[input-port] without
blocking. The match fails if not-yet-available characters might be
used to match @scheme[pattern].}
@;{
@;------------------------------------------------------------------------
@section{Regexp Substitution}
@defproc[(regexp-replace [char-pattern any/c][string any/c][insert any/c]) any]{
Performs a match using @scheme[pattern] on @scheme[input] and
then returns a string in which the matching portion of @scheme[input]
is replaced with @scheme[insert-string]. If @scheme[char-pattern]
matches no part of @scheme[string], then @scheme[string] is returned
unmodified.
The @scheme[char-pattern] must be a string or a character regexp value
(not a byte string or a byte regexp value).
If @scheme[insert-string] contains ``\&'', then ``\&'' is replaced with
the matching portion of @scheme[string] before it is substituted into
@scheme[string]. If @scheme[insert-string] contains
``{\Backslash}@scheme[n]'' (for some integer @scheme[n]), then it is
replaced with the @scheme[n]th matching sub-expression from
@scheme[string].\footnote{The backslash is a character in the string, so
an extra backslash is required to specify the string as a Scheme
constant. For example, the Scheme constant
@scheme["\\1"] is ``{\Backslash}1''.} ``\&''
and ``{\Backslash}0'' are synonymous. If the @scheme[n]th sub-expression
was not used in the match or if @scheme[n] is greater than the number of
sub-expressions in @scheme[pattern], then ``{\Backslash}@scheme[n]'' is
replaced with the empty string.
A literal ``\&'' or ``{\Backslash}'' is specified as
``{\Backslash}\&'' or ``{\Backslash}{\Backslash}'', respectively. If
@scheme[insert-string] contains ``{\Backslash}\$'', then
``{\Backslash}\$'' is replaced with the empty string. (This can be
used to terminate a number @scheme[n] following a backslash.) If a
``{\Backslash}'' is followed by anything other than a digit, ``\&'',
``{\Backslash}'', or ``\$'', then it is treated as ``{\Backslash}0''.}
@item{@defproc[(regexp-replace [byte-pattern any/c][string-or-bytes any/c][insert-string-or-bytes any/c]) any]
%
is analogous to @scheme[regexp-replace] on strings, where
@scheme[byte-pattern] is a byte string or a byte regexp value. The result
is always a byte string.}
@item{@defproc[(regexp-replace [char-pattern any/c][string any/c][proc any/c]) any]
%
is like @scheme[regexp-replace], but instead of an
@scheme[insert-string] third argument, the third argument is a
procedure that accepts match strings and produces a string to
replace the match. The @scheme[proc] must accept the same number of
arguments as @scheme[regexp-match] produces list elements for a
successful match with @scheme[char-pattern].}
@item{@defproc[(regexp-replace [byte-pattern any/c][string-or-bytes any/c][proc any/c]) any]
%
is analogous to @scheme[regexp-replace] on strings and a procedure
argument, but the procedure accepts byte strings to produce a byte
string, instead of character strings.}
@item{@defproc[(regexp-replace* [pattern any/c][string any/c][insert-string any/c]) any]
%
is the same as @scheme[regexp-replace], except that every instance of
@scheme[pattern] in @scheme[string] is replaced with
@scheme[insert-string]. Only non-overlapping instances of @scheme[pattern]
in the original @scheme[string] are replaced, so instances of
@scheme[pattern] within inserted strings are \Em{not} replaced
recursively. If, in the process of repeating matches, @scheme[pattern]
matches an empty string, the @exnraise[exn:fail].}
@item{@defproc[(regexp-replace* [byte-pattern any/c][bytes any/c][insert-bytes any/c]) any]
%
is analogous to @scheme[regexp-replace*] on strings.}
@item{@defproc[(regexp-replace* [char-pattern any/c][string any/c][proc any/c]) any]
%
is like @scheme[regexp-replace] with a procedure argument, but with
multiple instances replaced. The given @scheme[proc] is called once
for each match.}
@item{@defproc[(regexp-replace* [byte-pattern any/c][bytes any/c][proc any/c]) any]
%
is like @scheme[regexp-replace*] with a string and procedure
argument, but the procedure accepts and produces byte strings.}
}

View File

@ -76,12 +76,11 @@ depends on the current inspector.)
[immutables (listof non-negative-exact-integer?)
null]
[guard (or/c procedure? false/c) #f])
(values
struct-type?
struct-constructor-procedure?
struct-predicate-procedure?
struct-accessor-procedure?
struct-mutator-procedure?)]{
(values struct-type?
struct-constructor-procedure?
struct-predicate-procedure?
struct-accessor-procedure?
struct-mutator-procedure?)]{
Creates a new structure type. The @scheme[name] argument is used as
the type name. If @scheme[super-type] is not @scheme[#f], the new type
@ -234,10 +233,9 @@ A @index['("structure type properties")]{@defterm{structure type
@defproc[(make-struct-type-property [name symbol?]
[guard (or/c procedure? false/c) #f])
(values
struct-type-property?
procedure?
procedure?)]{
(values struct-type-property?
procedure?
procedure?)]{
Creates a new structure type property and returns three values:
@ -355,15 +353,14 @@ Returns two values:
}}
@defproc[(struct-type-info [struct-type struct-type?])
(values
symbol?
nonnegative-exact-integer?
nonnegative-exact-integer?
struct-accessor-procedure?
struct-mutator-procedure?
(listof nonnegative-exact-integer?)
(or/c struct-type? false/c)
boolean?)]{
(values symbol?
nonnegative-exact-integer?
nonnegative-exact-integer?
struct-accessor-procedure?
struct-mutator-procedure?
(listof nonnegative-exact-integer?)
(or/c struct-type? false/c)
boolean?)]{
Returns eight values that provide information about the structure type
descriptor @scheme[struct-type], assuming that the type is controlled