Added #:key and #:cache-keys to `sort', documented and tested.

svn: r9128
This commit is contained in:
Eli Barzilay 2008-04-01 20:58:41 +00:00
parent fac8cf7328
commit bfc990e3c5
4 changed files with 304 additions and 166 deletions

View File

@ -25,158 +25,19 @@
compose) compose)
(#%require (for-syntax "stxcase-scheme.ss")) (#%require (rename "sort.ss" raw-sort sort)
(for-syntax "stxcase-scheme.ss"))
;; This is a destructive stable merge-sort, adapted from slib and improved by (provide sort)
;; Eli Barzilay (define (sort lst less? #:key [getkey #f] #:cache-keys [cache-keys? #f])
;; The original source said: (unless (list? lst) (raise-type-error 'sort "proper list" lst))
;; It uses a version of merge-sort invented, to the best of my knowledge,
;; by David H. D. Warren, and first used in the DEC-10 Prolog system.
;; R. A. O'Keefe adapted it to work destructively in Scheme.
;; but it's a plain destructive merge sort, which I optimized further.
(define sort-internal
(let ()
(define-syntax sort-internal-body
(syntax-rules ()
[(_ lst less? n)
(begin
(define (merge-sorted! a b)
;; r-a? for optimization -- is r connected to a?
(define (loop r a b r-a?)
(if (less? (mcar b) (mcar a))
(begin
(when r-a? (set-mcdr! r b))
(if (null? (mcdr b)) (set-mcdr! b a) (loop b a (mcdr b) #f)))
;; (car a) <= (car b)
(begin
(unless r-a? (set-mcdr! r a))
(if (null? (mcdr a)) (set-mcdr! a b) (loop a (mcdr a) b #t)))))
(cond [(null? a) b]
[(null? b) a]
[(less? (mcar b) (mcar a))
(if (null? (mcdr b)) (set-mcdr! b a) (loop b a (mcdr b) #f))
b]
[else ; (car a) <= (car b)
(if (null? (mcdr a)) (set-mcdr! a b) (loop a (mcdr a) b #t))
a]))
(let step ([n n])
(cond [(> n 3)
(let* (; let* not really needed with mzscheme's l->r eval
[j (quotient n 2)] [a (step j)] [b (step (- n j))])
(merge-sorted! a b))]
;; the following two cases are just explicit treatment of
;; sublists of length 2 and 3, could remove both (and use the
;; above case for n>1) and it would still work, except a
;; little slower
[(= n 3) (let ([p lst] [p1 (mcdr lst)] [p2 (mcdr (mcdr lst))])
(let ([x (mcar p)] [y (mcar p1)] [z (mcar p2)])
(set! lst (mcdr p2))
(cond [(less? y x) ; y x
(cond [(less? z y) ; z y x
(set-mcar! p z)
(set-mcar! p1 y)
(set-mcar! p2 x)]
[(less? z x) ; y z x
(set-mcar! p y)
(set-mcar! p1 z)
(set-mcar! p2 x)]
[else ; y x z
(set-mcar! p y)
(set-mcar! p1 x)])]
[(less? z x) ; z x y
(set-mcar! p z)
(set-mcar! p1 x)
(set-mcar! p2 y)]
[(less? z y) ; x z y
(set-mcar! p1 z)
(set-mcar! p2 y)])
(set-mcdr! p2 '())
p))]
[(= n 2) (let ([x (mcar lst)] [y (mcar (mcdr lst))] [p lst])
(set! lst (mcdr (mcdr lst)))
(when (less? y x)
(set-mcar! p y)
(set-mcar! (mcdr p) x))
(set-mcdr! (mcdr p) '())
p)]
[(= n 1) (let ([p lst])
(set! lst (mcdr lst))
(set-mcdr! p '())
p)]
[else '()])))]))
(define sort-internals (make-hash-table))
(define-syntax make-precompiled-sort
(syntax-rules ()
[(_ less?) (hash-table-put! sort-internals less?
(lambda (lst n) (sort-internal-body lst less? n)))]))
(define ((sort-internal* less?) lst n)
(sort-internal-body lst less? n))
(make-precompiled-sort <)
(make-precompiled-sort string<?)
(make-precompiled-sort string-ci<?)
(make-precompiled-sort keyword<?)
(hash-table-put! sort-internals <= (hash-table-get sort-internals <))
(hash-table-put! sort-internals string<=? (hash-table-get sort-internals string<?))
(hash-table-put! sort-internals string-ci<=? (hash-table-get sort-internals string-ci<?))
(lambda (less? lst n)
((or (hash-table-get sort-internals less? #f)
(sort-internal* less?))
lst n))))
(define (sort lst less?)
(unless (list? lst)
(raise-type-error 'sort "proper list" lst))
(unless (and (procedure? less?) (procedure-arity-includes? less? 2)) (unless (and (procedure? less?) (procedure-arity-includes? less? 2))
(raise-type-error 'sort "procedure of arity 2" less?)) (raise-type-error 'sort "procedure of arity 2" less?))
(let ([n (length lst)]) (when (and getkey (not (and (procedure? getkey)
(cond (procedure-arity-includes? getkey 1))))
;; trivial case (raise-type-error 'sort "procedure of arity 1" getkey))
[(< n 2) lst] ;; don't provide the extra args if not needed, it's a bit faster
;; check if the list is already sorted (if getkey (raw-sort lst less? getkey cache-keys?) (raw-sort lst less?)))
;; (which can be a common case, eg, directory lists).
[(let loop ([last (car lst)] [next (cdr lst)])
(or (null? next)
(and (not (less? (car next) last))
(loop (car next) (cdr next)))))
lst]
;; inlined cases, for optimization of short lists
[(< n 3)
(if (= n 2)
;; (because of the above test, we can assume that the input is
;; unsorted)
(list (cadr lst) (car lst))
(let ([a (car lst)] [b (cadr lst)] [c (caddr lst)])
;; General note: we need a stable sort, so we should always
;; compare (less? later-item earlier-item) since it gives more
;; information. A good way to see that we have good code is to
;; check that each permutation appears exactly once. This means
;; that n=4 will have 23 cases, so don't bother. (Homework: write
;; a macro to generate code for a specific N. Bonus: prove
;; correctness. Extra bonus: prove optimal solution. Extra extra
;; bonus: prove optimal solution exists, extract macro from
;; proof.)
(let ([a (car lst)] [b (cadr lst)] [c (caddr lst)])
(if (less? b a)
;; b<a
(if (less? c b)
(list c b a)
;; b<a, b<=c
(if (less? c a) (list b c a) (list b a c)))
;; a<=b, so c<b (b<=c is impossible due to above test)
(if (less? c a) (list c a b) (list a c b))))))]
[else (let (;; list->mlist
[mlst (let ([mlst (mcons (car lst) null)])
(let loop ([last mlst] [lst (cdr lst)])
(if (null? lst)
mlst
(let ([new (mcons (car lst) null)])
(set-mcdr! last new)
(loop new (cdr lst))))))])
;; mlist->list
(let loop ([r (sort-internal less? mlst n)])
(if (null? r)
r
(cons (mcar r) (loop (mcdr r))))))])))
(define (do-remove who item list equal?) (define (do-remove who item list equal?)
(unless (list? list) (unless (list? list)

View File

@ -0,0 +1,201 @@
(module sort "pre-base.ss"
(provide sort)
(#%require (for-syntax "stxcase-scheme.ss")
(for-syntax "pre-base.ss"))
;; This is a destructive stable merge-sort, adapted from slib and improved by
;; Eli Barzilay.
;; The original source said:
;; It uses a version of merge-sort invented, to the best of my knowledge, by
;; David H. D. Warren, and first used in the DEC-10 Prolog system.
;; R. A. O'Keefe adapted it to work destructively in Scheme.
;; but it's a plain destructive merge sort, which I optimized further.
;; The source uses macros to optimize some common cases (eg, no `getkey'
;; function, or precompiled versions with inlinable common comparison
;; predicates) -- they are local macros so they're not left in the compiled
;; code.
;; Note that there is no error checking on the arguments -- the `sort' function
;; that this module provide is then wrapped up by a keyworded version in
;; "scheme/private/list.ss", and that's what everybody sees. The wrapper is
;; doing these checks.
(define sort (let ()
(define-syntax-rule (sort-internal-body lst *less? n has-getkey? getkey)
(begin
(define-syntax-rule (less? x y)
(if has-getkey? (*less? (getkey x) (getkey y)) (*less? x y)))
(define (merge-sorted! a b)
;; r-a? for optimization -- is r connected to a?
(define (loop r a b r-a?)
(if (less? (mcar b) (mcar a))
(begin
(when r-a? (set-mcdr! r b))
(if (null? (mcdr b)) (set-mcdr! b a) (loop b a (mcdr b) #f)))
;; (car a) <= (car b)
(begin
(unless r-a? (set-mcdr! r a))
(if (null? (mcdr a)) (set-mcdr! a b) (loop a (mcdr a) b #t)))))
(cond [(null? a) b]
[(null? b) a]
[(less? (mcar b) (mcar a))
(if (null? (mcdr b)) (set-mcdr! b a) (loop b a (mcdr b) #f))
b]
[else ; (car a) <= (car b)
(if (null? (mcdr a)) (set-mcdr! a b) (loop a (mcdr a) b #t))
a]))
(let step ([n n])
(cond [(> n 3)
(let* (; let* not really needed with mzscheme's l->r eval
[j (quotient n 2)] [a (step j)] [b (step (- n j))])
(merge-sorted! a b))]
;; the following two cases are just explicit treatment of sublists
;; of length 2 and 3, could remove both (and use the above case for
;; n>1) and it would still work, except a little slower
[(= n 3) (let ([p lst] [p1 (mcdr lst)] [p2 (mcdr (mcdr lst))])
(let ([x (mcar p)] [y (mcar p1)] [z (mcar p2)])
(set! lst (mcdr p2))
(cond [(less? y x) ; y x
(cond [(less? z y) ; z y x
(set-mcar! p z)
(set-mcar! p1 y)
(set-mcar! p2 x)]
[(less? z x) ; y z x
(set-mcar! p y)
(set-mcar! p1 z)
(set-mcar! p2 x)]
[else ; y x z
(set-mcar! p y)
(set-mcar! p1 x)])]
[(less? z x) ; z x y
(set-mcar! p z)
(set-mcar! p1 x)
(set-mcar! p2 y)]
[(less? z y) ; x z y
(set-mcar! p1 z)
(set-mcar! p2 y)])
(set-mcdr! p2 '())
p))]
[(= n 2) (let ([x (mcar lst)] [y (mcar (mcdr lst))] [p lst])
(set! lst (mcdr (mcdr lst)))
(when (less? y x)
(set-mcar! p y)
(set-mcar! (mcdr p) x))
(set-mcdr! (mcdr p) '())
p)]
[(= n 1) (let ([p lst])
(set! lst (mcdr lst))
(set-mcdr! p '())
p)]
[else '()]))))
(define sort-internals (make-hash-table))
(define _
(let-syntax ([precomp
(syntax-rules ()
[(_ less? more ...)
(let ([proc (lambda (lst n)
(sort-internal-body lst less? n #f #f))])
(hash-table-put! sort-internals less? proc)
(hash-table-put! sort-internals more proc) ...)])])
(precomp < <=)
(precomp > >=)
(precomp string<? string<=?)
(precomp string-ci<? string-ci<=?)
(precomp keyword<?)))
(define sort-internal
(case-lambda
[(less? lst n)
(let ([si (hash-table-get sort-internals less? #f)])
(if si
;; use a precompiled function if found
(si lst n)
;; otherwise, use the generic code
(let () (sort-internal-body lst less? n #f #f))))]
[(less? lst n getkey)
(sort-internal-body lst less? n #t getkey)]))
(define-syntax-rule (sort-body lst *less? has-getkey? getkey cache-keys?)
(let ([n (length lst)])
(define-syntax-rule (less? x y)
(if has-getkey? (*less? (getkey x) (getkey y)) (*less? x y)))
(cond
;; trivial case
[(= n 0) lst]
;; below we can assume a non-empty input list
[cache-keys?
;; decorate while converting to an mlist, and undecorate when going
;; back, always do this for consistency
(let (;; list -> decorated-mlist
[mlst (let ([x (car lst)]) (mcons (cons (getkey x) x) null))])
(let loop ([last mlst] [lst (cdr lst)])
(when (pair? lst)
(let ([new (let ([x (car lst)]) (mcons (cons (getkey x) x) null))])
(set-mcdr! last new)
(loop new (cdr lst)))))
;; decorated-mlist -> list
(let loop ([r (sort-internal *less? mlst n car)])
(if (null? r) r (cons (cdr (mcar r)) (loop (mcdr r))))))]
;; trivial cases
[(< n 2) lst]
;; check if the list is already sorted (which can be common, eg,
;; directory lists)
[(let loop ([last (car lst)] [next (cdr lst)])
(or (null? next)
(and (not (less? (car next) last))
(loop (car next) (cdr next)))))
lst]
;; below we can assume an unsorted list
;; inlined case, for optimization of short lists
[(< n 3)
(if (= n 2)
;; (because of the above test, we can assume that the input is
;; unsorted)
(list (cadr lst) (car lst))
(let ([a (car lst)] [b (cadr lst)] [c (caddr lst)])
;; General note: we need a stable sort, so we should always compare
;; (less? later-item earlier-item) since it gives more information.
;; A good way to see that we have good code is to check that each
;; permutation appears exactly once. This means that n=4 will have
;; 23 cases, so don't bother. (Homework: write a macro to generate
;; code for a specific N. Bonus: prove correctness. Extra bonus:
;; prove optimal solution. Extra extra bonus: prove optimal
;; solution exists, extract macro from proof.)
(let ([a (car lst)] [b (cadr lst)] [c (caddr lst)])
(if (less? b a)
;; b<a
(if (less? c b)
(list c b a)
;; b<a, b<=c
(if (less? c a) (list b c a) (list b a c)))
;; a<=b, so c<b (b<=c is impossible due to above test)
(if (less? c a) (list c a b) (list a c b))))))]
[else (let (;; list -> mlist
[mlst (mcons (car lst) null)])
(let loop ([last mlst] [lst (cdr lst)])
(when (pair? lst)
(let ([new (mcons (car lst) null)])
(set-mcdr! last new)
(loop new (cdr lst)))))
;; mlist -> list
(let loop ([r (if getkey
(sort-internal *less? mlst n getkey)
(sort-internal *less? mlst n))])
(if (null? r) r (cons (mcar r) (loop (mcdr r))))))])))
;; Finally, this is the provided `sort' value
(case-lambda
[(lst less?) (sort-body lst less? #f #f #f)]
[(lst less? getkey)
(if (and getkey (not (eq? values getkey)))
(sort lst less? getkey #f) (sort lst less?))]
[(lst less? getkey cache-keys?)
(if (and getkey (not (eq? values getkey)))
(sort-body lst less? #t getkey cache-keys?) (sort lst less?))])
)))

View File

@ -326,7 +326,9 @@ Returns @scheme[(remove* v lst eq?)].}
Returns @scheme[(remove* v lst eqv?)].} Returns @scheme[(remove* v lst eqv?)].}
@defproc[(sort [lst list?] [less-than? (any/c any/c . -> . any/c)]) @defproc[(sort [lst list?] [less-than? (any/c any/c . -> . any/c)]
[#:key key (any/c . -> . any/c) values]
[#:cache-keys cache-keys boolean? #f])
list?]{ list?]{
Returns a list sorted according to the @scheme[less-than?] procedure, Returns a list sorted according to the @scheme[less-than?] procedure,
@ -337,9 +339,28 @@ Returns a list sorted according to the @scheme[less-than?] procedure,
The sort is stable: if two elements of @scheme[lst] are ``equal'' The sort is stable: if two elements of @scheme[lst] are ``equal''
(i.e., @scheme[proc] does not return a true value when given the pair (i.e., @scheme[proc] does not return a true value when given the pair
in either order), then the elements preserve their relative order in either order), then the elements preserve their relative order
from @scheme[lst] in the output list. You should therefore use from @scheme[lst] in the output list. To guarantee this, you should
@scheme[sort] with strict comparison functions (e.g., @scheme[<] or use @scheme[sort] with a strict comparison functions (e.g.,
@scheme[string<?]; not @scheme[<=] or @scheme[string<=?]).} @scheme[<] or @scheme[string<?]; not @scheme[<=] or
@scheme[string<=?]).
If a @scheme[key] argument is specified, it is used to extract key
values for comparison from the list elements. Specifying it is
roughly equivalent to using a comparison procedure such as
@scheme[(lambda (x y) (less-than? (key x) (key y)))]. The
@scheme[key] procedure is used on two items in every comparison,
which is fine for simple cheap accessor function; a
@scheme[cache-keys] argument can be specified as @scheme[#t] if you
want to minimize uses of the key (e.g., with
@scheme[file-or-directory-modify-seconds]). In this case, the
@scheme[key] function will be used exactly once on each of the items:
sorting will proceed by ``decorating'' the input list with key values
first, and ``undecorating'' the resulting list (this can be done
manually, but at a greater overhead). For example, specifying a
@scheme[key] as @scheme[(lambda (x) (random))] with caching will
assign a random number for each item in the list and sort it
according to these numbers, which will shuffle the list in a uniform
way.}
@; ---------------------------------------- @; ----------------------------------------
@section{List Searching} @section{List Searching}

View File

@ -50,11 +50,18 @@
(define (random-list n range) (define (random-list n range)
(let loop ([n n] [r '()]) (let loop ([n n] [r '()])
(if (zero? n) r (loop (sub1 n) (cons (list (random range)) r))))) (if (zero? n) r (loop (sub1 n) (cons (list (random range)) r)))))
(define (sort* lst)
(let ([s1 (sort lst car<)]
[s2 (sort lst < #:key car)]
[s3 (sort lst < #:key car #:cache-keys #t)])
(test #t andmap eq? s1 s2)
(test #t andmap eq? s1 s3)
s1))
(define (test-sort len times) (define (test-sort len times)
(or (zero? times) (or (zero? times)
(and (let* ([rand (random-list len (if (even? times) 1000000 10))] (and (let* ([rand (random-list len (if (even? times) 1000000 10))]
[orig< (lambda (x y) (memq y (cdr (memq x rand))))] [orig< (lambda (x y) (memq y (cdr (memq x rand))))]
[sorted (sort rand car<)] [sorted (sort* rand)]
[l1 (reverse (cdr (reverse sorted)))] [l1 (reverse (cdr (reverse sorted)))]
[l2 (cdr sorted)]) [l2 (cdr sorted)])
(and (= (length sorted) (length rand)) (and (= (length sorted) (length rand))
@ -66,26 +73,74 @@
(test #t test-sort 1 10) (test #t test-sort 1 10)
(test #t test-sort 2 20) (test #t test-sort 2 20)
(test #t test-sort 3 60) (test #t test-sort 3 60)
(test #t test-sort 4 200) (test #t test-sort 4 100)
(test #t test-sort 5 200) (test #t test-sort 5 100)
(test #t test-sort 10 200) (test #t test-sort 10 100)
(test #t test-sort 100 200) (test #t test-sort 100 100)
(test #t test-sort 1000 200) (test #t test-sort 1000 100)
;; test stability ;; test stability
(test '((1) (2) (3 a) (3 b) (3 c)) sort '((3 a) (1) (3 b) (2) (3 c)) car<) (test '((1) (2) (3 a) (3 b) (3 c)) sort* '((3 a) (1) (3 b) (2) (3 c)))
;; test short lists (+ stable) ;; test short lists (+ stable)
(test '() sort '() car<) (test '() sort* '())
(test '((1 1)) sort '((1 1)) car<) (test '((1 1)) sort* '((1 1)))
(test '((1 2) (1 1)) sort '((1 2) (1 1)) car<) (test '((1 2) (1 1)) sort* '((1 2) (1 1)))
(test '((1) (2)) sort '((2) (1)) car<) (test '((1) (2)) sort* '((2) (1)))
(for-each (lambda (l) (test '((0 3) (1 1) (1 2)) sort l car<)) (for-each (lambda (l) (test '((0 3) (1 1) (1 2)) sort* l))
'(((1 1) (1 2) (0 3)) '(((1 1) (1 2) (0 3))
((1 1) (0 3) (1 2)) ((1 1) (0 3) (1 2))
((0 3) (1 1) (1 2)))) ((0 3) (1 1) (1 2))))
(for-each (lambda (l) (test '((0 2) (0 3) (1 1)) sort l car<)) (for-each (lambda (l) (test '((0 2) (0 3) (1 1)) sort* l))
'(((1 1) (0 2) (0 3)) '(((1 1) (0 2) (0 3))
((0 2) (1 1) (0 3)) ((0 2) (1 1) (0 3))
((0 2) (0 3) (1 1))))) ((0 2) (0 3) (1 1)))))
;; test #:key and #:cache-keys
(let ()
(define l '((0) (9) (1) (8) (2) (7) (3) (6) (4) (5)))
(define sorted '((0) (1) (2) (3) (4) (5) (6) (7) (8) (9)))
;; can't use keyword args, so use values and the sort call
(test sorted values (sort l < #:key car))
(let ([c1 0] [c2 0] [touched '()])
(test sorted values
(sort l (lambda (x y) (set! c1 (add1 c1)) (< x y))
#:key (lambda (x)
(set! c2 (add1 c2))
(set! touched (cons x touched))
(car x))))
;; test that the number of key uses is half the number of comparisons
(test #t = (* 2 c1) c2)
;; and that this is larger than the number of items in the list
(test #t < (length l) c2)
;; and that every item was touched
(test null remove* touched l))
(let ([c 0] [touched '()])
;; now cache the keys
(test sorted values
(sort l <
#:key (lambda (x)
(set! c (add1 c))
(set! touched (cons x touched))
(car x))
#:cache-keys #t))
;; test that the number of key uses is the same as the list length
(test #t = c (length l))
;; and that every item was touched
(test null remove* touched l))
(let* ([c 0] [getkey (lambda (x) (set! c (add1 c)) x)])
;; either way, we never use the key proc on no arguments
(test '() values (sort '() < #:key getkey #:cache-keys #f))
(test '() values (sort '() < #:key getkey #:cache-keys #t))
(test #t = c 0)
;; we also don't use it for 1-arg lists
(test '(1) values (sort '(1) < #:key getkey #:cache-keys #f))
(test #t = c 0)
;; but we do use it once if caching happens (it's a consistent interface)
(test '(1) values (sort '(1) < #:key getkey #:cache-keys #t))
(test #t = c 1)
;; check a few other short lists
(test '(1 2) values (sort '(2 1) < #:key getkey #:cache-keys #t))
(test '(1 2 3) values (sort '(2 3 1) < #:key getkey #:cache-keys #t))
(test '(1 2 3 4) values (sort '(4 2 3 1) < #:key getkey #:cache-keys #t))
(test #t = c 10)))
;; ---------- take/drop ---------- ;; ---------- take/drop ----------
(let () (let ()