added some index entries

svn: r10675
This commit is contained in:
Eli Barzilay 2008-07-08 15:19:31 +00:00
parent bdbcd1a56c
commit c408a4d773

View File

@ -292,16 +292,16 @@ otherwise.}
@examples[(min 1 3 2) (min 1 3 2.0)]} @examples[(min 1 3 2) (min 1 3 2.0)]}
@defproc[(gcd [n integer?] ...) integer?]{ Returns the greatest common @defproc[(gcd [n integer?] ...) integer?]{ Returns the
divisor of the @scheme[n]s. If no arguments are provided, the result is @as-index{greatest common divisor} of the @scheme[n]s. If no
@scheme[0]. arguments are provided, the result is @scheme[0].
@examples[(gcd 10) (gcd 12 81.0)]} @examples[(gcd 10) (gcd 12 81.0)]}
@defproc[(lcm [n integer?] ...) integer?]{ Returns the least common @defproc[(lcm [n integer?] ...) integer?]{ Returns the
multiple of the @scheme[n]s. If no arguments are provided, the result is @as-index{least common multiple} of the @scheme[n]s. If no arguments
@scheme[1]. are provided, the result is @scheme[1].
@examples[(lcm 10) (lcm 3 4.0)]} @examples[(lcm 10) (lcm 3 4.0)]}
@ -405,9 +405,10 @@ used.
@; ------------------------------------------------------------------------ @; ------------------------------------------------------------------------
@section{Powers and Roots} @section{Powers and Roots}
@defproc[(sqrt [z number?]) number?]{ Returns the principal square root @defproc[(sqrt [z number?]) number?]{ Returns the principal
of @scheme[z].The result is exact if @scheme[z] is exact and @scheme[z]'s @as-index{square root} of @scheme[z].The result is exact if
square root is rational. See also @scheme[integer-sqrt]. @scheme[z] is exact and @scheme[z]'s square root is rational. See
also @scheme[integer-sqrt].
@examples[(sqrt 4/9) (sqrt 2) (sqrt -1)]} @examples[(sqrt 4/9) (sqrt 2) (sqrt -1)]}