Make small primes faster.
Big improvement is shrinking the bit vector to the right size. Other improvements include full fixnum arithmetic and less mutation.
This commit is contained in:
parent
e55f39dccd
commit
d2fb1acb46
|
@ -10,88 +10,77 @@
|
||||||
*SMALL-PRIME-LIMIT*)
|
*SMALL-PRIME-LIMIT*)
|
||||||
|
|
||||||
; The moduli mod 60 that 2, 3 and 5 do not divide are:
|
; The moduli mod 60 that 2, 3 and 5 do not divide are:
|
||||||
|
(: non-235 (Listof Positive-Byte))
|
||||||
(define non-235 '(1 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59))
|
(define non-235 '(1 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59))
|
||||||
; The differences of these numbers are:
|
|
||||||
(define deltas '( 6 4 2 4 2 4 6 2 6 4 2 4 2 4 6 2))
|
|
||||||
; Note that there are exactly 16 of these moduli, so they fit in a u16.
|
; Note that there are exactly 16 of these moduli, so they fit in a u16.
|
||||||
; That is, a single u16 can represent a block of 60 numbers.
|
; That is, a single u16 can represent a block of 60 numbers.
|
||||||
|
|
||||||
(define mod60->bits (make-vector 60 (cast #f (U #f Integer))))
|
(: mod60->bits (Vectorof (U #f Byte)))
|
||||||
(for ([x (in-list non-235)]
|
(define mod60->bits (make-vector 60 #f))
|
||||||
|
(for ([x : Positive-Byte (in-list non-235)]
|
||||||
[b (in-naturals)])
|
[b (in-naturals)])
|
||||||
(vector-set! mod60->bits x b))
|
(vector-set! mod60->bits x (assert b byte?)))
|
||||||
|
|
||||||
(define-syntax-rule (mod60->bit m) (vector-ref mod60->bits m))
|
(: mod60->bit (Byte -> (U #f Byte)))
|
||||||
|
(define (mod60->bit m) (vector-ref mod60->bits m))
|
||||||
|
|
||||||
|
(: *number-of-groups* Positive-Fixnum)
|
||||||
(define *number-of-groups* 17000) ; each group contain 16 numbers
|
(define *number-of-groups* 17000) ; each group contain 16 numbers
|
||||||
(define *SMALL-PRIME-LIMIT* (- (* 60 *number-of-groups*) 1))
|
(: *SMALL-PRIME-LIMIT* Nonnegative-Fixnum)
|
||||||
|
(define *SMALL-PRIME-LIMIT* (assert (- (* 60 *number-of-groups*) 1) fixnum?))
|
||||||
|
|
||||||
; primes holds (* 60 *number-of-groups*) bits each
|
; primes holds (* 16 *number-of-groups*) bits
|
||||||
; representing a number not congruent to 2, 3, 5
|
; each representing a number not congruent to 2, 3, 5
|
||||||
(define primes (make-bit-vector (* 60 *number-of-groups*) #t))
|
(define primes (make-bit-vector (* (length non-235) *number-of-groups*) #t))
|
||||||
|
|
||||||
(define: (set-bit! [x : Integer]) : Void
|
(define: (clear-bit! [x : Nonnegative-Fixnum]) : Void
|
||||||
(define-values (q r) (quotient/remainder x 60))
|
(define q (quotient x 60))
|
||||||
(define b (mod60->bit r))
|
(define b (mod60->bit (remainder x 60)))
|
||||||
(when b (bit-vector-set! primes (+ (* q 16) b) #t)))
|
|
||||||
|
|
||||||
(define: (clear-bit! [x : Integer]) : Void
|
|
||||||
(define-values (q r) (quotient/remainder x 60))
|
|
||||||
(define b (mod60->bit r))
|
|
||||||
(when b (bit-vector-set! primes (+ (* q 16) b) #f)))
|
(when b (bit-vector-set! primes (+ (* q 16) b) #f)))
|
||||||
|
|
||||||
(define: (bit [x : Integer]) : Boolean
|
(define: (inner-bit [q : Nonnegative-Fixnum] [r : Byte]) : Boolean
|
||||||
(define-values (q r) (quotient/remainder x 60))
|
|
||||||
(define b (mod60->bit r))
|
(define b (mod60->bit r))
|
||||||
(if b
|
(if b
|
||||||
(bit-vector-ref primes (+ (* q 16) b))
|
(bit-vector-ref primes (+ (* q 16) b))
|
||||||
#f))
|
#f))
|
||||||
|
|
||||||
(clear-bit! 1) ; 1 is not prime
|
(define: (bit [x : Nonnegative-Fixnum]) : Boolean
|
||||||
|
(define q (quotient x 60))
|
||||||
|
(define r (remainder x 60))
|
||||||
|
(inner-bit q r))
|
||||||
|
|
||||||
(define: (mark-composites [x : Integer]) : Void
|
|
||||||
; x is prime => mark 2*x, 3*x, 4*x, 5*x, 6*x, 7*x, ... as prime
|
(define: (mark-composites [x : Nonnegative-Fixnum]) : Void
|
||||||
|
; x is prime => mark n*x as prime for all n
|
||||||
; Well 2*x, 3*x, 4*x, 5*x, 6*x are not in our table,
|
; Well 2*x, 3*x, 4*x, 5*x, 6*x are not in our table,
|
||||||
; so the first number to mark is 7*x .
|
; so only mark the multiples that are not divisible by 2, 3, or 5.
|
||||||
; Use the deltas to figure out which to mark.
|
(let/ec: exit : Void
|
||||||
(define y x)
|
(let: loop : Void ([a : Nonnegative-Fixnum 0])
|
||||||
(define delta*x 0)
|
(define y-base (* a 60 x))
|
||||||
(let loop ([ds deltas])
|
(for: ([d : Positive-Byte (in-list non-235)])
|
||||||
; (for ([delta (in-cycle deltas)] ...
|
(define y (assert (+ y-base (* d x)) fixnum?))
|
||||||
(when (empty? ds) (set! ds deltas))
|
(when (not (= y x))
|
||||||
(let ([delta (car ds)])
|
(if (<= y *SMALL-PRIME-LIMIT*)
|
||||||
(set! delta*x (* delta x))
|
(clear-bit! y)
|
||||||
(cond
|
(exit (void)))))
|
||||||
[(> y (- *SMALL-PRIME-LIMIT* delta*x))
|
(loop (assert (add1 a) fixnum?)))))
|
||||||
(void)]
|
|
||||||
[else
|
|
||||||
(set! y (+ y delta*x))
|
|
||||||
(clear-bit! y)
|
|
||||||
(loop (cdr ds))]))))
|
|
||||||
|
|
||||||
(define: sieve-done? : Boolean #f)
|
(define: sieve-done? : Boolean #f)
|
||||||
|
|
||||||
(define: (sieve) : Void
|
(define: (sieve) : Void
|
||||||
(define x 1)
|
(clear-bit! 1) ; 1 is not prime
|
||||||
(let loop ([ds deltas])
|
(let/ec: exit : Void
|
||||||
; (for ([delta (in-cycle deltas)] ...
|
(let: loop : Void ([q : Nonnegative-Fixnum 0])
|
||||||
(when (empty? ds) (set! ds deltas))
|
(for: ([r : Positive-Byte (in-list non-235)])
|
||||||
(let ([delta (car ds)])
|
(define x (assert (+ (* q 60) r) fixnum?))
|
||||||
(cond
|
(when (> (* x x) *SMALL-PRIME-LIMIT*)
|
||||||
[(> (* x x) (- *SMALL-PRIME-LIMIT* delta))
|
(exit (void)))
|
||||||
(void)]
|
(when (inner-bit q r) ; x is prime
|
||||||
[else
|
(mark-composites x)))
|
||||||
; x runs through all numbers incongruent to 2, 3 and 5
|
(loop (assert (add1 q) fixnum?)))))
|
||||||
(set! x (+ x delta))
|
|
||||||
(when (bit x) ; x is prime
|
|
||||||
(mark-composites x))
|
|
||||||
(loop (cdr ds))]))))
|
|
||||||
|
|
||||||
(define: (small-prime? [x : Integer]) : Boolean
|
(define: (small-prime? [x : Nonnegative-Fixnum]) : Boolean
|
||||||
(unless sieve-done?
|
(unless sieve-done?
|
||||||
(sieve)
|
(sieve)
|
||||||
(set! sieve-done? #t))
|
(set! sieve-done? #t))
|
||||||
|
(or (= x 2) (= x 3) (= x 5) (bit x)))
|
||||||
(or (= x 2) (= x 3) (= x 5)
|
|
||||||
(and (mod60->bit (modulo x 60))
|
|
||||||
(bit x))))
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user