From db500e8b588910eca8a9c0f10c2dc564617aa905 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jens=20Axel=20S=C3=B8gaard?= Date: Sat, 17 Nov 2012 21:31:41 +0100 Subject: [PATCH] Fixed next-prime and prev-prime problem --- collects/math/number-theory.rkt | 8 +++++++- collects/math/scribblings/math-number-theory.scrbl | 14 ++++---------- 2 files changed, 11 insertions(+), 11 deletions(-) diff --git a/collects/math/number-theory.rkt b/collects/math/number-theory.rkt index 0049284b07..6b74ca8886 100644 --- a/collects/math/number-theory.rkt +++ b/collects/math/number-theory.rkt @@ -3,7 +3,7 @@ (require typed/untyped-utils "private/number-theory/divisibility.rkt" "private/number-theory/modular-arithmetic.rkt" - "private/number-theory/number-theory.rkt" + (except-in "private/number-theory/number-theory.rkt" prev-prime next-prime) (except-in "private/number-theory/factorial.rkt" factorial permutations) "private/number-theory/bernoulli.rkt" "private/number-theory/eulerian-number.rkt" @@ -25,6 +25,11 @@ "private/number-theory/binomial.rkt" [binomial (Integer Integer -> Natural)]) +(require/untyped-contract + "private/number-theory/number-theory.rkt" + [next-prime (Integer -> Integer)] + [prev-prime (Integer -> Integer)]) + (provide (all-from-out "private/number-theory/divisibility.rkt" "private/number-theory/modular-arithmetic.rkt" @@ -40,5 +45,6 @@ "private/number-theory/quadratic.rkt" "private/number-theory/quadratic-residues.rkt" "private/number-theory/tangent-number.rkt") + next-prime prev-prime factorial permutations binomial) diff --git a/collects/math/scribblings/math-number-theory.scrbl b/collects/math/scribblings/math-number-theory.scrbl index ed65ada4ea..18356df8aa 100644 --- a/collects/math/scribblings/math-number-theory.scrbl +++ b/collects/math/scribblings/math-number-theory.scrbl @@ -193,22 +193,16 @@ Returns the n'th positive prime. Returns the first prime larger than @racket[z]. @interaction[#:eval untyped-eval - (untyped-next-prime 4) - (untyped-next-prime 5)] - -Note: Use @racket[next-prime] in Typed Racket and -@racket[untyped-next-prime] otherwise. + (next-prime 4) + (next-prime 5)] } @defproc[(prev-prime [z Integer]) prime?]{ Returns the first prime smaller than @racket[z]. @interaction[#:eval untyped-eval - (untyped-prev-prime 4) - (untyped-prev-prime 5)] - -Note: Use @racket[prev-prime] in Typed Racket and -@racket[untyped-prev-prime] otherwise. + (prev-prime 4) + (prev-prime 5)] } @defproc[(next-primes [z Integer] [n Natural]) (Listof prime?)]{