Add full contracts to red-black.rkt, with extensive documention in red-black.scrbl.

A submodule called "uncontracted" provides the contract-free bindings,
as I suspect we'll need them for the token tree for maximum performance.OB
This commit is contained in:
Danny Yoo 2012-11-21 16:03:59 -08:00
parent 0936d8c20b
commit e4c9ad484e
3 changed files with 1230 additions and 73 deletions

View File

@ -1,3 +1,4 @@
#lang setup/infotab
(define scribblings '(("syntax-color.scrbl" () (gui-library))))
(define scribblings '(("syntax-color.scrbl" () (gui-library))
("red-black.scrbl")))

View File

@ -1,5 +1,6 @@
#lang racket/base
(require (for-syntax racket/base))
(require (for-syntax racket/base)
racket/contract)
;; Implementation of an augmented red-black tree, where extra
;; information supports position-based queries.
@ -47,46 +48,68 @@
;;
(provide tree?
tree-root
tree-first
tree-last
node?
nil
nil?
node-data
node-self-width
node-subtree-width
node-parent
node-left
node-right
node-color
red?
black?
new-tree
new-node
insert-first!
insert-before!
insert-after!
insert-first/data!
insert-last/data!
insert-before/data!
insert-after/data!
delete!
join!
split!
search
;; TODO: defensively check whether the node being deleted or split off
;; actually exists in the tree.
minimum
maximum
successor
predecessor
position
(provide [contract-out
[tree? (any/c . -> . boolean?)]
[tree-root (tree? . -> . node?)]
[tree-first (tree? . -> . node?)]
[tree-last (tree? . -> . node?)]
[node? (any/c . -> . boolean?)]
[singleton-node? (any/c . -> . boolean?)]
[non-nil-node? (any/c . -> . boolean?)]
[nil node?]
[rename public:nil? nil-node? (any/c . -> . boolean?)]
[node-data (node? . -> . any)]
[set-node-data! (node? any/c . -> . any)]
[node-self-width (node? . -> . natural-number/c)]
[update-node-self-width! (non-nil-node? natural-number/c . -> . any)]
[node-subtree-width (node? . -> . natural-number/c)]
[node-parent (node? . -> . node?)]
[node-left (node? . -> . node?)]
[node-right (node? . -> . node?)]
[node-color (node? . -> . (or/c 'red 'black))]
[rename public:red? red? (node? . -> . boolean?)]
[rename public:black? black? (node? . -> . boolean?)]
[new-tree (-> tree?)]
[new-node (any/c natural-number/c . -> . node?)]
[insert-first! (tree? singleton-node? . -> . any)]
[insert-last! (tree? singleton-node? . -> . any)]
[insert-before! (tree? non-nil-node? singleton-node? . -> . any)]
[insert-after! (tree? non-nil-node? singleton-node? . -> . any)]
[insert-first/data! (tree? any/c natural-number/c . -> . any)]
[insert-last/data! (tree? any/c natural-number/c . -> . any)]
[insert-before/data! (tree? non-nil-node? any/c natural-number/c . -> . any)]
[insert-after/data! (tree? non-nil-node? any/c natural-number/c . -> . any)]
[delete! (->i ([t tree?]
[n (t) (non-nil-node-in-tree? t)])
[result any/c])]
[join! (tree? tree? . -> . tree?)]
[concat! (tree? singleton-node? tree? . -> . any)]
[split! (->i ([t tree?]
[n (t) (non-nil-node-in-tree? t)])
(values [t1 tree?] [t2 tree?]))]
[search (tree? natural-number/c . -> . node?)]
[search/residual (tree? natural-number/c . -> . (values node? natural-number/c))]
[minimum (node? . -> . node?)]
[maximum (node? . -> . node?)]
[successor (node? . -> . node?)]
[predecessor (node? . -> . node?)]
[position (node? . -> . natural-number/c)]
tree-items)
[tree-items (tree? . -> . list?)]
[tree-fold-inorder (tree? (node? any/c . -> . any) any/c . -> . any)]
[tree-fold-preorder (tree? (node? any/c . -> . any) any/c . -> . any)]
[tree-fold-postorder (tree? (node? any/c . -> . any) any/c . -> . any)]])
;; First, our data structures:
@ -119,21 +142,63 @@
(set-node-right! v v)
v))
;; singleton-node?: any -> boolean
;; Returns true if n is a singleton node that is unattached to
;; any other tree. We've carefully designed the operations
;; so that the only way to get a singleton node is either through
;; the new-node constructor, split!, or delete!. Similarly,
;; the public-accessible tree-insertion functions will check that
;; they receive singleton nodes. This way, we avoid the potential
;; construction of cycles.
(define (singleton-node? n)
(and (node? n)
(red? n)
(nil? (node-parent n))))
;; non-nil-node?: any -> boolean
;; Returns true if n is a non-nil node.
(define (non-nil-node? n)
(and (node? n)
(not (nil? n))))
;; We use this function for contract checking with delete! and split!,
;; where the node being deleted must be in the tree in the first place.
(define (non-nil-node-in-tree? t)
(flat-named-contract 'node-in-tree
(lambda (n)
(and (node? n)
(not (nil? n))
(let loop ([n n])
(define p (node-parent n))
(cond [(nil? p)
(eq? (tree-root t) n)]
[else
(loop p)]))))))
;; nil?: node -> boolean
;; Tell us if we're at the distinguished nil node.
(define-syntax-rule (nil? x) (eq? x nil))
(define public:nil? (procedure-rename (lambda (x) (nil? x)) 'nil?))
;; red?: node -> boolean
;; Is the node red?
(define-syntax-rule (red? x)
(let ([v x])
(eq? (node-color v) red)))
(define public:red? (procedure-rename (lambda (x) (red? x)) 'red?))
;; black?: node -> boolean
;; Is the node black?
(define-syntax-rule (black? x)
(let ([v x])
(eq? (node-color v) black)))
(define public:black? (procedure-rename (lambda (x) (black? x)) 'black?))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
@ -243,6 +308,7 @@
;; insert-first!: tree (and/c (not nil?) node?) -> void
;; Insert node x as the first element in the tree.
;; x is assumed to be a singleton element whose fields
@ -505,6 +571,13 @@
;; at z.p.
(when (not (nil? z.p))
(update-subtree-width-up-to-root! z.p))
; Turn z singleton:
(set-node-parent! z nil)
(set-node-left! z nil)
(set-node-right! z nil)
(set-node-color! z red)
(values x y-original-color nil-parent)]
;; This case is symmetric with the previous case.
@ -514,6 +587,10 @@
(define nil-parent (transplant-for-delete! a-tree z x))
(when (not (nil? z.p))
(update-subtree-width-up-to-root! z.p))
(set-node-parent! z nil)
(set-node-left! z nil)
(set-node-right! z nil)
(set-node-color! z red)
(values x y-original-color nil-parent)]
;; The hardest case is when z has non-nil left and right.
@ -556,6 +633,13 @@
(set-node-color! y (node-color z))
(update-subtree-width-up-to-root!
(if (nil? x) nil-parent (node-parent x)))
;; Turn z singleton:
(set-node-parent! z nil)
(set-node-left! z nil)
(set-node-right! z nil)
(set-node-color! z red)
(values x y-original-color nil-parent))])])
(cond [(eq? black y-original-color)
(fix-after-delete! a-tree x nil-parent)]
@ -690,10 +774,21 @@
;; The total length of the left subtree will be at least offset, if possible.
;; Returns nil if the offset is not within the tree.
(define (search a-tree offset)
(define-values (result residual) (search/residual a-tree offset))
result)
;; search/residual: tree natural -> (values (U node nil) natural)
;; Search for the node closest to offset. Also returns the residual left
;; after searching.
;; The total length of the left subtree will be at least offset, if possible.
;; Returns nil if the offset is not within the tree.
(define (search/residual a-tree offset)
(let loop ([offset offset]
[a-node (tree-root a-tree)])
(cond
[(nil? a-node) nil]
[(nil? a-node)
(values nil offset)]
[else
(define left (node-left a-node))
(define left-subtree-width (node-subtree-width left))
@ -704,12 +799,13 @@
(define self-width (node-self-width a-node))
(cond
[(< residual-offset self-width)
a-node]
(values a-node residual-offset)]
[else
(loop (- residual-offset self-width)
(node-right a-node))])])])))
;; position: node -> (or natural -1)
;; Given a node in the tree, returns its position such that
;; a search in the tree with that position will return the node.
@ -886,20 +982,32 @@
;; split!: tree node -> (values tree tree)
;; Partitions the tree into two trees: the predecessors of x, and the
;; successors of x.
;; successors of x. Also mutates x into a singleton node.
;;
;; Note: during the loop, the L and R trees do not necessarily have
;; a valid tree-first or tree-last. I want to avoid recomputing
;; it for each fresh subtree I construct.
(define (split! a-tree x)
(define x-child-bh (computed-black-height (node-left x)))
(define ancestor (node-parent x))
(define ancestor-child-bh (if (black? x) (add1 x-child-bh) x-child-bh))
(define coming-from-the-right? (eq? (node-right (node-parent x)) x))
(define L (node->tree/bh (node-left x) x-child-bh))
(define R (node->tree/bh (node-right x) x-child-bh))
;; Turn x into a singleton node:
(detach! x)
(set-node-right! x nil)
(set-node-left! x nil)
(set-node-color! x red)
;; The loop walks the ancestors of x, adding the left and right
;; elements appropriately.
(let loop ([ancestor (node-parent x)]
[ancestor-child-bh (if (black? x) (add1 x-child-bh) x-child-bh)]
[coming-from-the-right? (eq? (node-right (node-parent x)) x)]
[L (node->tree/bh (node-left x) x-child-bh)]
[R (node->tree/bh (node-right x) x-child-bh)])
(let loop ([ancestor ancestor]
[ancestor-child-bh ancestor-child-bh]
[coming-from-the-right? coming-from-the-right?]
[L L]
[R R])
(cond
[(nil? ancestor)
;; Now that we have our L and R, fix up their last and first
@ -939,6 +1047,15 @@
(concat! R ancestor subtree))])])))
;; update-node-self-width!: node exact-nonnegative-integer -> void Updates
;; the node's self width, and propagates that change up the tree.
;; Internal note: do not confuse this with the similarly-named
;; update-node-subtree-width, which does something different.
(define (update-node-self-width! n w)
(set-node-self-width! n w)
(update-subtree-width-up-to-root! n))
;; force-tree-first!: tree -> void
;; INTERNAL
;; Force tree-first's value.
@ -1012,6 +1129,7 @@
;; tree-items: tree -> (listof (list X natural))
;; PUBLIC
;; Returns the list of items in the tree.
(define (tree-items t)
(let loop ([n (tree-root t)]
@ -1026,6 +1144,107 @@
(loop (node-right n) acc)))])))
;; tree-fold-inorder: tree (node X) X -> X
;; Folds an accumulating function across the tree.
(define (tree-fold-inorder t f acc)
(let loop ([n (tree-root t)]
[acc acc])
(cond
[(nil? n)
acc]
[else
(define acc-1 (loop (node-left n) acc))
(define acc-2 (f n acc-1))
(loop (node-right n) acc-2)])))
;; tree-fold-postorder: tree (node X) X -> X
;; Folds an accumulating function across the tree.
(define (tree-fold-postorder t f acc)
(let loop ([n (tree-root t)]
[acc acc])
(cond
[(nil? n)
acc]
[else
(define acc-1 (loop (node-left n) acc))
(define acc-2 (loop (node-right n) acc-1))
(f n acc-2)])))
;; tree-fold-preorder: tree (node X) X -> X
;; Folds an accumulating function across the tree.
(define (tree-fold-preorder t f acc)
(let loop ([n (tree-root t)]
[acc acc])
(cond
[(nil? n)
acc]
[else
(define acc-1 (f n acc))
(define acc-2 (loop (node-left n) acc-1))
(loop (node-right n) acc-2)])))
;; The following are re-exports of the internals. The only difference
;; is that they are the uncontracted forms.
(module+ uncontracted
(provide tree?
tree-root
tree-first
tree-last
node?
singleton-node?
non-nil-node?
nil
[rename-out [public:nil? nil-node?]]
node-data
set-node-data!
node-self-width
node-subtree-width
node-parent
node-left
node-right
node-color
[rename-out [public:red? red?]
[public:black? black?]]
new-tree
new-node
insert-first!
insert-last!
insert-before!
insert-after!
insert-first/data!
insert-last/data!
insert-before/data!
insert-after/data!
delete!
join!
concat!
split!
update-node-self-width!
search
search/residual
minimum
maximum
successor
predecessor
position
tree-items
tree-fold-inorder
tree-fold-preorder
tree-fold-postorder))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
@ -1034,6 +1253,9 @@
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(module+ test
(require rackunit
rackunit/text-ui
@ -1573,7 +1795,39 @@
(check-equal? (node-data (search t 15)) "the")
(check-equal? (node-data (search t 16)) "emergency")
(check-equal? (node-data (search t 25)) "broadcast")
(check-equal? (node-data (search t 34)) "system"))))
(check-equal? (node-data (search t 34)) "system"))
(test-case
"searching with residuals"
(define t (new-tree))
(define words (string-split "This is a test of the emergency broadcast system"))
(for ([word (in-list words)])
(insert-last/data! t word (string-length word)))
(define (s t p)
(define-values (n r) (search/residual t p))
(list (node-data n) r))
(check-equal? (s t 0) '("This" 0))
(check-equal? (s t 1) '("This" 1))
(check-equal? (s t 2) '("This" 2))
(check-equal? (s t 3) '("This" 3))
(check-equal? (s t 4) '("is" 0))
(check-equal? (s t 5) '("is" 1))
(check-equal? (s t 6) '("a" 0))
(check-equal? (s t 7) '("test" 0))
(check-equal? (s t 8) '("test" 1))
(check-equal? (s t 9) '("test" 2))
(check-equal? (s t 10) '("test" 3))
(check-equal? (s t 11) '("of" 0))
(check-equal? (s t 12) '("of" 1))
(check-equal? (s t 13) '("the" 0))
(check-equal? (s t 14) '("the" 1))
(check-equal? (s t 15) '("the" 2))
(check-equal? (s t 16) '("emergency" 0))
(check-equal? (s t 17) '("emergency" 1))
(check-equal? (s t 24) '("emergency" 8))
(check-equal? (s t 25) '("broadcast" 0))
(check-equal? (s t 33) '("broadcast" 8))
(check-equal? (s t 34) '("system" 0)))))
(define position-tests
@ -1748,7 +2002,9 @@
"(a) ---split-a--> () ()"
(define t (new-tree))
(insert-last/data! t "a" 1)
(define-values (l r) (split! t (search t 0)))
(define n (search t 0))
(define-values (l r) (split! t n))
(check-true (singleton-node? n))
(check-equal? (map first (tree-items l)) '())
(check-equal? (map first (tree-items r)) '())
(check-rb-structure! l)
@ -1759,7 +2015,9 @@
(define t (new-tree))
(insert-last/data! t "a" 1)
(insert-last/data! t "b" 1)
(define-values (l r) (split! t (search t 0)))
(define n (search t 0))
(define-values (l r) (split! t n))
(check-true (singleton-node? n))
(check-equal? (map first (tree-items l)) '())
(check-equal? (map first (tree-items r)) '("b"))
(check-rb-structure! l)
@ -1770,7 +2028,9 @@
(define t (new-tree))
(insert-last/data! t "a" 1)
(insert-last/data! t "b" 1)
(define-values (l r) (split! t (search t 1)))
(define n (search t 1))
(define-values (l r) (split! t n))
(check-true (singleton-node? n))
(check-equal? (map first (tree-items l)) '("a"))
(check-equal? (map first (tree-items r)) '())
(check-rb-structure! l)
@ -1782,7 +2042,9 @@
(insert-last/data! t "a" 1)
(insert-last/data! t "b" 1)
(insert-last/data! t "c" 1)
(define-values (l r) (split! t (search t 1)))
(define n (search t 1))
(define-values (l r) (split! t n))
(check-true (singleton-node? n))
(check-equal? (map first (tree-items l)) '("a"))
(check-equal? (map first (tree-items r)) '("c"))
(check-rb-structure! l)
@ -1795,7 +2057,9 @@
(insert-last/data! t "b" 1)
(insert-last/data! t "c" 1)
(insert-last/data! t "d" 1)
(define-values (l r) (split! t (search t 0)))
(define n (search t 0))
(define-values (l r) (split! t n))
(check-true (singleton-node? n))
(check-equal? (map first (tree-items l)) '())
(check-equal? (map first (tree-items r)) '("b" "c" "d"))
(check-rb-structure! l)
@ -1809,7 +2073,9 @@
(insert-last/data! t "b" 1)
(insert-last/data! t "c" 1)
(insert-last/data! t "d" 1)
(define-values (l r) (split! t (search t 1)))
(define n (search t 1))
(define-values (l r) (split! t n))
(check-true (singleton-node? n))
(check-equal? (map first (tree-items l)) '("a"))
(check-equal? (map first (tree-items r)) '("c" "d"))
(check-rb-structure! l)
@ -1823,7 +2089,9 @@
(insert-last/data! t "b" 1)
(insert-last/data! t "c" 1)
(insert-last/data! t "d" 1)
(define-values (l r) (split! t (search t 2)))
(define n (search t 2))
(define-values (l r) (split! t n))
(check-true (singleton-node? n))
(check-equal? (map first (tree-items l)) '("a" "b"))
(check-equal? (map first (tree-items r)) '("d"))
(check-rb-structure! l)
@ -1836,7 +2104,9 @@
(insert-last/data! t "b" 1)
(insert-last/data! t "c" 1)
(insert-last/data! t "d" 1)
(define-values (l r) (split! t (search t 3)))
(define n (search t 3))
(define-values (l r) (split! t n))
(check-true (singleton-node? n))
(check-equal? (map first (tree-items l)) '("a" "b" "c"))
(check-equal? (map first (tree-items r)) '())
(check-rb-structure! l)
@ -1850,6 +2120,7 @@
1))
(define letter-m (search t 12))
(define-values (l r) (split! t letter-m))
(check-true (singleton-node? letter-m))
(check-equal? (map first (tree-items l)) '("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l"))
(check-equal? (map first (tree-items r)) '("n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"))
(check-rb-structure! l)
@ -1863,7 +2134,9 @@
(define t (new-tree))
(for ([w (in-list letters)])
(insert-last/data! t w 1))
(define-values (l r) (split! t (search t n)))
(define a-letter (search t n))
(define-values (l r) (split! t a-letter))
(check-true (singleton-node? a-letter))
(define-values (expected-l 1+expected-r) (split-at letters n))
(check-equal? (map first (tree-items l)) expected-l)
(check-equal? (map first (tree-items r)) (rest 1+expected-r))
@ -1908,7 +2181,85 @@
(check-eq? (successor nil) nil)
(check-eq? (maximum nil) nil)
(check-eq? (minimum nil) nil))))
(define fold-tests
(test-suite
"fold-inorder, fold-preorder, fold-postorder tests"
(printf "fold tests...\n")
(test-case
"nil case"
(define t (new-tree))
(check-eq? (tree-fold-inorder t values 'foo) 'foo)
(check-eq? (tree-fold-preorder t values 'bar) 'bar)
(check-eq? (tree-fold-postorder t values 'baz) 'baz))
(test-case
"simple case"
(define one (new-node 1 1))
(define two (new-node 2 1))
(define seven (new-node 7 1))
(define five (new-node 5 1))
(define eight (new-node 8 1))
(define eleven (new-node 11 1))
(define fourteen (new-node 14 1))
(define fifteen (new-node 15 1))
(define t (new-tree))
(insert-first! t one)
(insert-after! t one two)
(insert-after! t two seven)
(insert-before! t seven five)
(insert-after! t seven eight)
(insert-last! t eleven)
(insert-after! t eleven fourteen)
(insert-after! t fourteen fifteen)
;; After this sequence, the constructed tree has the following shape:
;;
;; (7 (2 (1 () ())
;; (5 () ()))
;; (11 (8 () ())
;; (14 ()
;; (15 () ()))))
(define (f n acc)
(cons (node-data n) acc))
(check-equal? (reverse (tree-fold-inorder t f '()))
'(1 2 5 7 8 11 14 15))
(check-equal? (reverse (tree-fold-preorder t f '()))
'(7 2 1 5 11 8 14 15))
(check-equal? (reverse (tree-fold-postorder t f '()))
'(1 5 2 8 15 14 11 7)))))
(define update-width-tests
(test-suite
"update-node-self-width! tests"
(test-case
"one node"
(define t (new-tree))
(insert-last/data! t "foo" 3)
(update-node-self-width! (tree-first t) 17)
(check-equal? (node-self-width (tree-root t)) 17)
(check-equal? (node-subtree-width (tree-root t)) 17))
(test-case
"two nodes"
(define t (new-tree))
(insert-last/data! t "foo" 3)
(insert-last/data! t "bar" 3)
(set-node-data! (tree-first t)
"generally, foo and bar are terrible names")
(update-node-self-width! (tree-first t) 41)
(check-equal? (node-subtree-width (tree-root t)) 44)
(check-equal? (node-self-width (tree-root t)) 41)
(check-equal? (node-subtree-width (tree-last t)) 3)
(check-equal? (node-self-width (tree-last t)) 3))
(test-case
"on a singleton node" ;; being single is hard.
(define n (new-node "so lonely" 9))
(set-node-data! n "soooo lovely")
(update-node-self-width! n 12)
(check-equal? (node-self-width n) 12)
(check-equal? (node-subtree-width n) 12))))
@ -1945,6 +2296,7 @@
(define offset (kth-offset k))
(define node (search t offset))
(delete! t node)
(check-true (singleton-node? node))
(set! known-model (let-values ([(a b) (split-at known-model k)])
(append a (rest b)))))
@ -1985,6 +2337,20 @@
(set! known-model (append (take known-model (add1 k))
(list new-word)
(drop known-model (add1 k))))))
;; replace an old word with a new one.
(define/public (replace-at-random!)
(when (not (empty? known-model))
(define k (random (length known-model)))
(define offset (kth-offset k))
(define node (search t offset))
(define new-word (random-word))
(set-node-data! node new-word)
(update-node-self-width! node (string-length new-word))
(set! known-model (append (take known-model k)
(list new-word)
(drop known-model (add1 k))))))
;; Concatenation. Drop our existing tree and throw it at the
@ -2003,6 +2369,7 @@
(define offset (kth-offset k))
(define node (search t offset))
(define-values (l r) (split! t node))
(check-true (singleton-node? node))
(set! t l)
(send m2 catch-and-concat-at-front r (drop known-model (add1 k)))
(set! known-model (take known-model k))))
@ -2032,7 +2399,7 @@
(for ([i (in-range number-of-iterations)])
(define m (new angry-monkey%))
(for ([i (in-range number-of-operations)])
(case (random 12)
(case (random 13)
[(0 1 2)
(send m insert-front!)]
[(3 4 5)
@ -2041,7 +2408,9 @@
(send m insert-after/random!)]
[(8 9)
(send m insert-before/random!)]
[(10 11)
[(10)
(send m replace-at-random!)]
[(11 12)
(send m delete-random!)]))
(send m check-consistency!)))))
@ -2057,7 +2426,7 @@
(for ([i (in-range number-of-iterations)])
(define m (new angry-monkey%))
(for ([i (in-range number-of-operations)])
(case (random 12)
(case (random 13)
[(0 1)
(send m insert-front!)]
[(2 3)
@ -2066,7 +2435,9 @@
(send m insert-after/random!)]
[(6 7)
(send m insert-before/random!)]
[(8 9 10 11)
[(8)
(send m replace-at-random!)]
[(9 10 11 12)
(send m delete-random!)]))
(send m check-consistency!)))))
@ -2083,7 +2454,7 @@
(define m2 (new angry-monkey%))
(for ([i (in-range number-of-operations)])
(define random-monkey (if (= 0 (random 2)) m1 m2))
(case (random 11)
(case (random 12)
[(0 1 2)
(send random-monkey insert-front!)]
[(3 4 5)
@ -2091,12 +2462,14 @@
[(6)
(send random-monkey delete-random!)]
[(7)
(send m1 throw-all-at-monkey m2)]
(send random-monkey replace-at-random!)]
[(8)
(send m2 throw-all-at-monkey m1)]
(send m1 throw-all-at-monkey m2)]
[(9)
(send m1 throw-some-at-monkey m2)]
(send m2 throw-all-at-monkey m1)]
[(10)
(send m1 throw-some-at-monkey m2)]
[(11)
(send m2 throw-some-at-monkey m1)]))
(send m1 check-consistency!)
(send m2 check-consistency!)))))
@ -2118,7 +2491,7 @@
(for ([i (in-range number-of-iterations)])
(define m (new angry-monkey%))
(for ([i (in-range number-of-operations)])
(case (random 11)
(case (random 6)
[(0)
(send m insert-front!)]
[(1)
@ -2126,8 +2499,10 @@
[(2)
(send m delete-random!)]
[(3)
(send m insert-after/random!)]
(send m replace-at-random!)]
[(4)
(send m insert-after/random!)]
[(5)
(send m insert-before/random!)]))
(send m check-consistency!))))))
(for ([t (in-list threads)])
@ -2150,11 +2525,12 @@
(define t (new-tree))
(for ([w (in-list elts)])
(insert-last/data! t w 1))
(define pivot (search t n))
(define-values (l r)
(let ([pivot (search t n)])
(time-acc
total-splitting-time
(split! t pivot))))
(time-acc
total-splitting-time
(split! t pivot)))
(check-true (singleton-node? pivot))
(define-values (expected-l 1+expected-r) (split-at elts n))
(check-equal? (map first (tree-items l)) expected-l)
(check-equal? (map first (tree-items r)) (rest 1+expected-r)))
@ -2172,6 +2548,8 @@
position-tests
concat-tests
predecessor-successor-min-max-tests
fold-tests
update-width-tests
split-tests
mixed-tests

View File

@ -0,0 +1,778 @@
#lang scribble/doc
@(require scribble/manual
scribble/eval
(for-label syntax-color/private/red-black
racket/base
racket/string))
@(define my-eval (make-base-eval))
@(my-eval '(require syntax-color/private/red-black racket/string))
@title{Ordered Red-Black Trees}
@author+email["Danny Yoo" "dyoo@hashcollision.org"]
@defmodule[syntax-color/private/red-black]
This is an implementation of an augmented red-black tree with extra information
to support position-based queries.
The intended usage case of this structure is to maintain an ordered sequence of
items, where each item has an internal length. Given such a sequence, we want
to support quick lookup by position and in-place insertions and deletions.
We also want to support the catenation and splitting of sequences.
For example:
@interaction[#:eval my-eval
(define a-tree (new-tree))
(for ([w (in-list '("This" " " "is" " " "a" " " "test"))])
(insert-last/data! a-tree w (string-length w)))
(node-data (search a-tree 0))
(node-data (search a-tree 10))
(define at-test-node (search a-tree 10))
(insert-before/data! a-tree at-test-node "small" 5)
(tree-items a-tree)
@code:comment{Split at the node holding "small":}
(define at-small-node (search a-tree 10))
(define-values (left-side right-side) (split! a-tree at-small-node))
(tree-items left-side)
(tree-items right-side)
(define joined-tree (join! left-side right-side))
(tree-items joined-tree)
]
This implementation follows the basic outline for order-statistic red-black
trees described in @cite{clrs2009} and incorporates a few extensions suggsted
in @cite{wein2005}. As a red-black tree, the structure ensures that the tree's
height is never greater than @math{2*lg(#-of-nodes + 1)}, guaranteeing good
worst-case behavior for its operations.
The main types of values used in the library are @emph{trees} and @emph{nodes}.
A tree has a @emph{root} node, and each node has holds arbitrary @emph{data}
and a natural @emph{self-width}, along with a reference to the elements smaller
(@racket[node-left]) and larger (@racket[node-right]). Each node also
remembers the entire width of its subtree, which can be accessed with
@racket[node-subtree-width]. The tree holds first and last pointers into the
structure to allow for fast access to the beginning and end of the sequence. A
distinguished @racket[nil] node lies at the leaves of the tree.
@section{API}
@declare-exporting[syntax-color/private/red-black]
@subsection{Data types}
@defproc[(new-tree) tree?]{
Constructs a new tree. The tree's root is initially @racket[nil].
@interaction[#:eval my-eval
(define a-tree (new-tree))
a-tree
(nil-node? (tree-root a-tree))
]
}
@defproc[(tree? [x any/c]) boolean?]{
Returns @racket[#t] if @racket[x] is a tree.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(tree? a-tree)
(tree? "not a tree")
(tree? (new-node '(not a tree either) 0))
]}
@defproc[(tree-root [t tree?]) node?]{
Returns the root node of the tree @racket[t].
If the tree is empty, returns the distinguished @racket[nil] node.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(nil-node? (tree-root (new-tree)))
(define a-node (new-node "first node!" 11))
(insert-first! a-tree a-node)
(eq? a-node (tree-root a-tree))]
}
@defproc[(tree-first [t tree?]) node?]{
Returns the first node in the tree.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(nil-node? (tree-first (new-tree)))
(define a-node (new-node "first node!" 11))
(define another-node (new-node "last node!" 11))
(insert-first! a-tree a-node)
(insert-last! a-tree another-node)
(eq? a-node (tree-first a-tree))]
}
@defproc[(tree-last [t tree?]) node?]{
Returns the last node in the tree.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(nil-node? (tree-first (new-tree)))
(define a-node (new-node "first node!" 11))
(define another-node (new-node "last node!" 11))
(insert-first! a-tree a-node)
(insert-last! a-tree another-node)
(eq? another-node (tree-last a-tree))]
}
@defproc[(new-node [data any/c] [width natural-number/c]) singleton-node?]{
Constructs a new singleton node. This node can be inserted into a tree with
@racket[insert-first!], @racket[insert-last!], @racket[insert-before!], or
@racket[insert-after!].
@interaction[#:eval my-eval
(new-node #("a" "node") 7)]
}
@defproc[(node? [x any/c]) boolean?]{
Returns @racket[#t] if @racket[x] is a node.
@interaction[#:eval my-eval
(node? (new-node #("a" "node") 7))
@code:comment{Trees are not nodes: they _have_ nodes.}
(node? (new-tree))
(node? (tree-root (new-tree)))
]
}
@defproc[(singleton-node? [x any/c]) boolean?]{
Returns @racket[#t] if @racket[x] is a @emph{singleton node}. A singleton node
is unattached to any tree, and is not the @racket[nil] node.
@interaction[#:eval my-eval
(singleton-node? (new-node #("a" "node") 7))
(singleton-node? nil)
@code:comment{Create a fresh node:}
(define a-node (new-node "about to attach" 0))
(singleton-node? a-node)
@code:comment{After attachment, it is no longer singleton:}
(define a-tree (new-tree))
(insert-first! a-tree a-node)
(singleton-node? a-node)
@code:comment{Operations such as delete! or split! will break}
@code:comment{off nodes as singletons again:}
(delete! a-tree a-node)
(singleton-node? a-node)
]
}
@defthing[nil node?]{
The distinguished @racket[nil] node. By definition, @racket[nil] is colored
black, and its @racket[node-parent], @racket[node-left], and
@racket[node-right] are pointed to itself.}
@defproc[(non-nil-node? [x any/c]) boolean?]{
Returns @racket[#t] if @racket[x] is a non-nil node.
@interaction[#:eval my-eval
(non-nil-node? nil)
(non-nil-node? (new-node "I am not a number" 1))
]
}
@defproc[(nil-node? [x any/c]) boolean?]{
Returns @racket[#t] if @racket[x] is the nil node.
@interaction[#:eval my-eval
(nil-node? nil)
(nil-node? (new-node "I am not a number" 1))
]
}
@defproc[(node-data [n node?]) any/c]{
Returns the data associated to node @racket[n]. Note that the
@racket[node-data] and @racket[node-self-width] are entirely independent.
@interaction[#:eval my-eval
(define a-node (new-node "utah" 4))
(node-data a-node)
]
}
@defproc[(set-node-data! [n node?] [v any/c]) void?]{
Assigns the data associated to node @racket[n]. Note that the
@racket[node-data] and @racket[node-self-width] are entirely independent.
@interaction[#:eval my-eval
(define a-node (new-node "utah" 4))
(set-node-data! a-node "rhode island")
(node-data a-node)
]
}
@defproc[(node-self-width [n node?]) any/c]{
Returns the self-width associated to node @racket[n]. Note that the
@racket[node-data] and @racket[node-self-width] are entirely independent.
@interaction[#:eval my-eval
(define a-node (new-node "utah" 4))
(node-self-width a-node)
]
}
@defproc[(update-node-self-width! [n node?] [w natural-number/c]) any/c]{
Updates the self-width associated to node @racket[n]. When attached to a tree,
also propagates the width's change to the widths of subtrees, upward through
its parents to the root. Note that the @racket[node-data] and
@racket[node-self-width] are entirely independent.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(insert-last/data! a-tree "hello" 5)
(insert-last/data! a-tree "world" 1)
@code:comment{The tree as a whole has width 6:}
(node-subtree-width (tree-root a-tree))
@code:comment{Updates will propagate to the root:}
(update-node-self-width! (tree-last a-tree) 5)
(node-self-width (tree-last a-tree))
(node-subtree-width (tree-root a-tree))
]
}
@defproc[(node-subtree-width [n node?]) any/c]{
Returns the width of the entire subtree at node @racket[n]. This sums the
width of the left and right child subtrees, as well as its self-width.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(insert-last/data! a-tree "berkeley" 1)
(insert-last/data! a-tree "stanford" 1)
(insert-last/data! a-tree "wpi" 1)
(insert-last/data! a-tree "brown" 1)
(insert-last/data! a-tree "utah" 1)
@code:comment{The entire tree should sum to five, since each element contributes one.}
(node-subtree-width (tree-root a-tree))
(node-subtree-width (node-left (tree-root a-tree)))
(node-subtree-width (node-right (tree-root a-tree)))
]
}
@defproc[(node-parent [n node?]) node?]{
Returns the parent of the node @racket[n].
@interaction[#:eval my-eval
(define a-tree (new-tree))
(insert-last/data! a-tree "bill and ted's excellent adventure" 1)
(insert-last/data! a-tree "the matrix" 1)
(insert-last/data! a-tree "speed" 1)
(define p (node-parent (tree-last a-tree)))
(node-data p)]
}
@defproc[(node-left [n node?]) node?]{
Returns the left child of the node @racket[n].
@interaction[#:eval my-eval
(define a-tree (new-tree))
(insert-last/data! a-tree "bill and ted's excellent adventure" 1)
(insert-last/data! a-tree "the matrix" 1)
(insert-last/data! a-tree "speed" 1)
(define p (node-left (tree-root a-tree)))
(node-data p)]
}
@defproc[(node-right [n node?]) node?]{
Returns the right child of the node @racket[n].
@interaction[#:eval my-eval
(define a-tree (new-tree))
(insert-last/data! a-tree "bill and ted's excellent adventure" 1)
(insert-last/data! a-tree "the matrix" 1)
(insert-last/data! a-tree "speed" 1)
(define p (node-right (tree-root a-tree)))
(node-data p)]
}
@defproc[(node-color [n node?]) (or/c 'red 'black)]{
Returns the color of the node @racket[n]. The red-black tree structure uses
this value to maintain balance.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(insert-last/data! a-tree "the color purple" 1)
(insert-last/data! a-tree "pretty in pink" 1)
(insert-last/data! a-tree "the thin red line" 1)
(insert-last/data! a-tree "clockwork orange" 1)
(insert-last/data! a-tree "fried green tomatoes" 1)
(node-color (tree-root a-tree))
(tree-fold-inorder a-tree
(lambda (n acc)
(cons (list (node-data n) (node-color n))
acc))
'())]
}
@defproc[(red? [n node?]) boolean?]{
Returns @racket[#t] if node @racket[n] is red.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(insert-last/data! a-tree "the hobbit" 1)
(insert-last/data! a-tree "the fellowship of the ring" 1)
(red? (tree-root a-tree))
(red? (node-right (tree-root a-tree)))
]
}
@defproc[(black? [n node?]) boolean?]{
Returns @racket[#t] if node @racket[n] is black.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(insert-last/data! a-tree "the fellowship of the ring" 1)
(insert-last/data! a-tree "the two towers" 1)
(insert-last/data! a-tree "return of the king" 1)
@code:comment{The root is always black.}
(black? (tree-root a-tree))
@code:comment{The tree should have towers as the root, with}
@code:comment{the fellowship and king as left and right respectively.}
(map node-data
(list (tree-root a-tree)
(node-left (tree-root a-tree))
(node-right (tree-root a-tree))))
(black? (tree-root a-tree))
(black? (node-left (tree-root a-tree)))
(black? (node-right (tree-root a-tree)))
]
}
@subsection{Operations}
@defproc[(insert-first! [t tree?] [n singleton-node?]) void?]{
Adds node @racket[n] as the first element in tree @racket[t].
@interaction[#:eval my-eval
(define a-tree (new-tree))
(define a-node (new-node "pear" 1))
(insert-first! a-tree a-node)
(eq? (tree-root a-tree) a-node)
]
Note that attempting to add an attached, non-singleton node to a tree will
raise a contract error.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(define a-node (new-node "persimmon" 1))
(insert-first! a-tree a-node)
(insert-first! a-tree a-node)
]
}
@defproc[(insert-last! [t tree?] [n singleton-node?]) void?]{
Adds node @racket[n] as the last element in tree @racket[t].
@interaction[#:eval my-eval
(define a-tree (new-tree))
(define a-node (new-node "apple" 1))
(insert-last! a-tree a-node)
(eq? (tree-root a-tree) a-node)
]
Note that attempting to add an attached, non-singleton node to a tree will
raise a contract error.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(define a-node (new-node "orange" 1))
(insert-last! a-tree a-node)
(insert-last! a-tree a-node)
]
}
@defproc[(insert-before! [t tree?] [n1 node?] [n2 node?]) void?]{
Adds node @racket[n2] before node @racket[n1] in tree @racket[t]. This effectively
makes @racket[n2] the @racket[predecessor] of @racket[n1].
@interaction[#:eval my-eval
(define a-tree (new-tree))
(define a-node (new-node "banana" 1))
(define b-node (new-node "mango" 1))
(insert-first! a-tree a-node)
(insert-before! a-tree a-node b-node)
(eq? (predecessor a-node) b-node)
(eq? (successor b-node) a-node)
]
Note that attempting to add an attached, non-singleton node to a tree will
raise a contract error.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(define a-node (new-node "peach" 1))
(insert-first! a-tree a-node)
(insert-before! a-tree a-node a-node)
]
}
@defproc[(insert-after! [t tree?] [n1 node?] [n2 node?]) void?]{
Adds node @racket[n2] after node @racket[n1] in tree @racket[t]. This effectively
makes @racket[n2] the @racket[successor] of @racket[n1].
@interaction[#:eval my-eval
(define a-tree (new-tree))
(define a-node (new-node "cherry" 1))
(define b-node (new-node "pawpaw" 1))
(insert-first! a-tree a-node)
(insert-after! a-tree a-node b-node)
(eq? (successor a-node) b-node)
(eq? (predecessor b-node) a-node)
]
Note that attempting to add an attached, non-singleton node to a tree will
raise a contract error.
@interaction[#:eval my-eval
(define a-tree (new-tree))
(define a-node (new-node "grapefruit" 1))
(insert-first! a-tree a-node)
(insert-after! a-tree a-node a-node)
]
}
@deftogether[
(
@defproc[(insert-first/data! [t tree?] [data any/c] [width natural-number/c]) void?]{}
@defproc[(insert-last/data! [t tree?] [data any/c] [width natural-number/c]) void?]{}
@defproc[(insert-before/data! [t tree?] [n node?] [data any/c] [width natural-number/c]) void?]{}
@defproc[(insert-after/data! [t tree?] [n node?] [data any/c] [width natural-number/c]) void?]{})
]{
For user convenience, the functions @racket[insert-first/data!],
@racket[insert-last/data!], @racket[insert-before/data!], and
@racket[insert-after/data!] have been provided. These create nodes and insert
into the tree structure the same way as @racket[insert-first!],
@racket[insert-last!], @racket[insert-before!], and @racket[insert-after!].
@interaction[#:eval my-eval
(define t (new-tree))
(insert-first/data! t "message in a bottle" 1)
(insert-last/data! t "don't stand so close to me" 1)
(insert-before/data! t (tree-first t) "everything she does is magic" 1)
(insert-after/data! t (tree-last t) "king of pain" 1)
(tree-items t)
]
}
@defproc[(delete! [t tree?] [n non-nil-node?]) void?]{
Deletes node @racket[n] from the tree @racket[t]. After deletion, @racket[n]
will become a singleton node.
@interaction[#:eval my-eval
(define t (new-tree))
(define n1 (new-node "George, George, George of the Jungle," 1))
(define n2 (new-node "strong as he can be..." 1))
(define n3 (new-node "aaaaaaaaaaah!" 1))
(define n4 (new-node "watch out for that..." 1))
(define n5 (new-node "<thump!>" 1))
(define n6 (new-node "treeeeeeeeee!, " 1))
(for ([n (in-list (list n1 n2 n3 n4 n5 n6))])
(insert-last! t n))
(delete! t n5)
(tree-items t)
]
Note that @racket[n] must be attached to tree @racket[t] or else an
error will be raised:
@interaction[#:eval my-eval
(define t1 (new-tree))
(define t2 (new-tree))
(insert-first/data! t1 "tricky" 1)
(insert-first/data! t2 "tricky" 1)
@code:comment{This should raise an error:}
(delete! t1 (tree-root t2))
]}
@defproc[(join! [t1 tree?] [t2 tree?]) tree?]{
Destructively joins trees @racket[t1] and @racket[t2], returning a tree that
has the contents of both. Every element in @racket[t1] is treated less than
the elements in @racket[t2].
@interaction[#:eval my-eval
(define t1 (new-tree))
(for ([name (in-list '(goku gohan krillin piccolo vegeta))])
(insert-last/data! t1 name 1))
@code:comment{Tier two characters:}
(define t2 (new-tree))
(for ([name (in-list '(yamcha tien chiaotzu bulma chi-chi
oolong puar master-roshi))])
(insert-last/data! t2 name 1))
(define tree-of-mighty-z-warriors (join! t1 t2))
(tree-items tree-of-mighty-z-warriors)
]
}
@defproc[(concat! [t1 tree?] [n singleton-node?] [t2 tree?]) tree?]{
Destructively joins tree @racket[t1], singleton node @racket[n], and tree
@racket[t2], returning a tree that has the contents of both. Every element in
@racket[t1] is treated less than @racket[x], and @racket[x] is treated smaller than all
the elements in @racket[t2].
@interaction[#:eval my-eval
(define t1 (new-tree))
(define t2 (new-tree))
(insert-last/data! t1 "inigo" 50)
(define x (new-node "vizzini" 1))
(insert-last/data! t2 "fezzik" 100)
(define poor-lost-circus-performers (concat! t1 x t2))
(tree-items poor-lost-circus-performers)
]
}
@defproc[(split! [t tree?] [n non-nil-node?]) (values tree? tree?)]{
Destructively splits tree @racket[t] into two trees, the first containing the
elements smaller than node @racket[n], and the second containing those larger.
Afterwards, @racket[n] becomes a singleton node.
@interaction[#:eval my-eval
(define t (new-tree))
(for ([name '(melchior caspar bob balthazar)])
(insert-last/data! t name 1))
(define bob-node (search t 2))
(singleton-node? bob-node)
(define-values (l r) (split! t bob-node))
@code:comment{We tree kings of orient are:}
(append (tree-items l) (tree-items r))
(singleton-node? bob-node)
]
Note that @racket[n] must be attached to tree @racket[t] or else
an error will be raised.
@interaction[#:eval my-eval
(define t (new-tree))
(for ([name '(melchior caspar bob balthazar)])
(insert-last/data! t name 1))
@code:comment{This should raise an error:}
(define t2 (new-tree))
(insert-last! t2 (new-node "bob" 1))
(split! t (tree-root t2))
]}
@defproc[(search [t tree?] [p natural-number/c]) node?]{
Searches for the node at or within the given position @racket[p] of the tree.
If the position is out of bounds, returns @racket[nil].
@interaction[#:eval my-eval
(define t (new-tree))
(for ([word '("alpha" "beta" "gamma" "delta" "epsilon" "zeta")])
(insert-last/data! t word (string-length word)))
(node-data (search t 0))
(node-data (search t 5))
(node-data (search t 6))
(node-data (search t 7))
(node-data (search t 8))
(node-data (search t 9))
(nil-node? (search t 100))
]
Note: nodes with a self-width of zero are effectively invisible to
@racket[search], and will be skipped over.
}
@defproc[(search/residual [t tree?] [p natural-number/c]) (values node? natural-number/c)]{
Searches for the node at or within the given position @racket[p] of the tree.
This is an extension of @racket[search] that returns a second value: the offset
into the element where the search has terminated. If the position is out of
bounds of any element, the first component of the returned value is
@racket[nil].
@interaction[#:eval my-eval
(define t (new-tree))
(for ([word '("alpha" "beta" "gamma" "delta" "epsilon" "zeta")])
(insert-last/data! t word (string-length word)))
(search/residual t 5)
(search/residual t 6)
(search/residual t 7)
(define-values (a-node residual)
(search/residual t 100))
(nil-node? a-node)
residual
(+ residual (node-subtree-width (tree-root t)))
]
}
@defproc[(minimum [n node?]) node?]{
Given a node @racket[n], returns the minimum element of the subtree rooted at
@racket[n].
@interaction[#:eval my-eval
(define t (new-tree))
(for ([x (in-list '("ftl" "xcom" "civ"))])
(insert-first/data! t x (string-length x)))
(node-data (minimum (tree-root t)))
]
Note: to get the minimum of the whole tree, it's faster to use
@racket[tree-first].
}
@defproc[(maximum [n node?]) node?]{
Given a node @racket[n], returns the maximum element of the subtree rooted at
@racket[n].
@interaction[#:eval my-eval
(define t (new-tree))
(for ([x (in-list '("ftl" "xcom" "civ"))])
(insert-first/data! t x (string-length x)))
(node-data (maximum (tree-root t)))
]
Note: to get the maximum of the whole tree, it's faster to use
@racket[tree-last].
}
@defproc[(successor [n node?]) node?]{
Given a node @racket[n] contained in some tree, returns the immediate
successor of @racket[n] in an inorder traversal of that tree.
@interaction[#:eval my-eval
(define partial-alien-tree (new-tree))
(for ([name '("sectoid" "floater" "thin man" "chryssalid"
"muton" "cyberdisk")])
(insert-last/data! partial-alien-tree name 1))
(define first-alien (tree-first partial-alien-tree))
(node-data (successor first-alien))
(node-data (successor (successor first-alien)))
]
}
@defproc[(predecessor [n node?]) node?]{
Given a node @racket[n] contained in some tree, returns the immediate
predecessor of @racket[n] in an inorder traversal of that tree.
@interaction[#:eval my-eval
(define partial-alien-tree (new-tree))
(for ([name '("sectoid" "floater" "thin man" "chryssalid"
"muton" "cyberdisk")])
(insert-last/data! partial-alien-tree name 1))
(define last-alien (tree-last partial-alien-tree))
(node-data (predecessor last-alien))
(node-data (predecessor (predecessor last-alien)))
]
}
@defproc[(position [n node?]) natural-number/c]{
Given a node @racket[n] contained in some tree, returns the immediate
position of @racket[n] in that tree.
@interaction[#:eval my-eval
(define story-tree (new-tree))
(for ([word (string-split "if you give a mouse a cookie")])
(insert-last/data! story-tree word (string-length word)))
(define a-pos (position (tree-last story-tree)))
a-pos
(node-data (search story-tree a-pos))
]
}
@defproc[(tree-items [t tree?]) (listof/c (list/c any/c natural-number/c))]{
Given a tree, returns a list of its data and width pairs.
@interaction[#:eval my-eval
(define t (new-tree))
(insert-last/data! t "rock" 4)
(insert-last/data! t "paper" 5)
(insert-last/data! t "scissors" 8)
(tree-items t)
]
}
@deftogether[
(@defproc[(tree-fold-inorder [t tree?] [f (node? any/c . -> . any)] [acc any/c]) any]{}
@defproc[(tree-fold-preorder [t tree?] [f (node? any/c . -> . any)] [acc any/c]) any]{}
@defproc[(tree-fold-postorder [t tree?] [f (node? any/c . -> . any)] [acc any/c]) any]{})]{
Iterates a function @racket[f] across the nodes of the tree, in inorder, preorder,
and postorder respectively.
@interaction[#:eval my-eval
(define t (new-tree))
(insert-last/data! t "three" 1)
(insert-last/data! t "blind" 1)
(insert-last/data! t "mice" 1)
@code:comment{"blind" should be the root, with}
@code:comment{"three" and "mice" as left and right.}
(define (f n acc) (cons (node-data n) acc))
(reverse (tree-fold-inorder t f '()))
(reverse (tree-fold-preorder t f '()))
(reverse (tree-fold-postorder t f '()))
]
}
@section{Uncontracted library}
This library uses contracts extensively to prevent the user from messing up;
however, the contract checking may be prohibitively
expensive for certain applications.
The uncontracted bindings of this library can be accessed through:
@racketblock[(require (submod syntax-color/private/red-black uncontracted))]
This provides the same bindings as the regular API, but with no contract
checks. Use this with extreme care: Improper use of the uncontracted form of
this library may lead to breaking the red-black invariants, or (even worse)
introducing cycles in the structure. If you don't know whether you should be
using the uncontracted forms or not, you probably should not.
@section{Bibliography}
@bibliography[
@bib-entry[#:key "clrs2009"
#:title "Introduction to Algorithms, Third Edition"
#:is-book? #t
#:author "Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein"
#:date "2009"
#:url "http://mitpress.mit.edu/books/introduction-algorithms"]
@bib-entry[#:key "wein2005"
#:title "Efficient implementation of red-black trees with split and catenate operations"
#:author "Ron Wein"
#:date "2005"
#:url "http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.4875"]
]
@close-eval[my-eval]