Improved performance of prime? for small numbers

This commit is contained in:
Jens Axel Søgaard 2012-12-11 19:43:31 +01:00
parent 9a0e948a58
commit e5016951d0
2 changed files with 107 additions and 11 deletions

View File

@ -3,7 +3,8 @@
(require "../base/base-random.rkt"
"divisibility.rkt"
"modular-arithmetic.rkt"
"types.rkt")
"types.rkt"
"small-primes.rkt")
(require/typed typed/racket
[integer-sqrt/remainder (Natural -> (Values Natural Natural))])
@ -55,10 +56,9 @@
(define prime-strong-pseudo-trials
(integer-length (assert (/ 1 prime-strong-pseudo-certainty) integer?)))
(define *SMALL-PRIME-LIMIT* 10000)
; (define *SMALL-PRIME-LIMIT* 1000) ; use 1000 for coverage testing
; Determines the size of the pre-built table of small primes
(define *SMALL-FACORIZATION-LIMIT* *SMALL-PRIME-LIMIT*)
(define *VERY-SMALL-PRIME-LIMIT* 1000)
; Determines the size of the pre-built table of very small primes
(define *SMALL-FACORIZATION-LIMIT* *VERY-SMALL-PRIME-LIMIT*)
; Determines whether to use naive factorization or Pollards rho method.
@ -193,7 +193,7 @@
(define prime?
(let ()
; TODO: Only store odd integers in this table
(define N *SMALL-PRIME-LIMIT*)
(define N *VERY-SMALL-PRIME-LIMIT*)
(define ps (make-vector (+ N 1) #t))
(define ! vector-set!)
(! ps 0 #f)
@ -204,10 +204,13 @@
(! ps m #f))))
(lambda (n)
(let ([n (abs n)])
(if (< n N)
(vector-ref ps n)
(prime-strong-pseudo? n))))))
(cond
[(< n N)
(vector-ref ps n)]
[(< n *SMALL-PRIME-LIMIT*)
(small-prime? n)]
[else
(prime-strong-pseudo? n)])))))
(: next-prime : (case-> (Natural -> Natural)
(Integer -> Integer)))
@ -304,7 +307,7 @@
(: factorize : Natural -> (Listof (List Natural Natural)))
(define (factorize n)
(if (< n *SMALL-PRIME-LIMIT*) ; NOTE: Do measurement of best cut
(if (< n *SMALL-FACORIZATION-LIMIT*) ; NOTE: Do measurement of best cut
(factorize-small n)
(factorize-large n)))

View File

@ -0,0 +1,93 @@
#lang typed/racket
(require/typed
data/bit-vector
[#:opaque BitVector bit-vector?]
[make-bit-vector (Integer Boolean -> BitVector)]
[bit-vector-set! (BitVector Integer Boolean -> Void)]
[bit-vector-ref (BitVector Integer -> Boolean)])
(provide small-prime?
*SMALL-PRIME-LIMIT*)
; The moduli mod 60 that 2, 3 and 5 do not divide are:
(define non-235 '(1 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59))
; The differences of these numbers are:
(define deltas '( 6 4 2 4 2 4 6 2 6 4 2 4 2 4 6 2))
; Note that there are exactly 16 of these moduli, so they fit in a u16.
; That is, a single u16 can represent a block of 60 numbers.
(define mod60->bits (make-vector 60 (cast #f (U #f Integer))))
(for ([x (in-list non-235)]
[b (in-naturals)])
(vector-set! mod60->bits x b))
(define-syntax-rule (mod60->bit m) (vector-ref mod60->bits m))
(define *number-of-groups* 17000) ; each group contain 16 numbers
(define *SMALL-PRIME-LIMIT* (- (* 60 *number-of-groups*) 1))
; primes holds (* 60 *number-of-groups*) bits each
; representing a number not congruent to 2, 3, 5
(define primes (make-bit-vector (* 60 *number-of-groups*) #t))
(define: (set-bit! [x : Integer]) : Void
(define-values (q r) (quotient/remainder x 60))
(define b (mod60->bit r))
(when b (bit-vector-set! primes (+ (* q 16) b) #t)))
(define: (clear-bit! [x : Integer]) : Void
(define-values (q r) (quotient/remainder x 60))
(define b (mod60->bit r))
(when b (bit-vector-set! primes (+ (* q 16) b) #f)))
(define: (bit [x : Integer]) : Boolean
(define-values (q r) (quotient/remainder x 60))
(define b (mod60->bit r))
(if b
(bit-vector-ref primes (+ (* q 16) b))
#f))
(clear-bit! 1) ; 1 is not prime
(define: (mark-composites [x : Integer]) : Void
; x is prime => mark 2*x, 3*x, 4*x, 5*x, 6*x, 7*x, ... as prime
; Well 2*x, 3*x, 4*x, 5*x, 6*x are not in our table,
; so the first number to mark is 7*x .
; Use the deltas to figure out which to mark.
(define y x)
(define delta*x 0)
(let loop ([ds deltas])
; (for ([delta (in-cycle deltas)] ...
(when (empty? ds) (set! ds deltas))
(let ([delta (car ds)])
(set! delta*x (* delta x))
(cond
[(> y (- *SMALL-PRIME-LIMIT* delta*x))
(void)]
[else
(set! y (+ y delta*x))
(clear-bit! y)
(loop (cdr ds))]))))
(define: (sieve) : Void
(define x 1)
(let loop ([ds deltas])
; (for ([delta (in-cycle deltas)] ...
(when (empty? ds) (set! ds deltas))
(let ([delta (car ds)])
(cond
[(> (* x x) (- *SMALL-PRIME-LIMIT* delta))
(void)]
[else
; x runs through all numbers incongruent to 2, 3 and 5
(set! x (+ x delta))
(when (bit x) ; x is prime
(mark-composites x))
(loop (cdr ds))]))))
(sieve)
(define: (small-prime? [x : Integer]) : Boolean
(or (= x 2) (= x 3) (= x 5)
(and (mod60->bit (modulo x 60))
(bit x))))